
Resource Interaction Failures in Mobile Applications: A
Challenge for the Software Product Line Testing Community

Euler Marinho
Federal University of Minas Gerais
Belo Horizonte, Minas Gerais, Brazil

Fischer Ferreira
Federal University of Itajubá
Itabira, Minas Gerais, Brazil

Eduardo Fernandes
University of Southern Denmark

Odense, Denmark

João Paulo Diniz
Federal University of Minas Gerais
Belo Horizonte, Minas Gerais, Brazil

Eduardo Figueiredo
Federal University of Minas Gerais
Belo Horizonte, Minas Gerais, Brazil

ABSTRACT
Context: Many mobile applications run on multiple platforms with
specific available resources. These resources are associated with
communication capabilities, sensors, and user customization. Cer-
tain resource combinations imply interactions between resources
that are likely to produce failures in mobile applications, thereby
harming the user experience.
Challenge: There may be a large number of resource combinations
for a single mobile application. Consequently, exhaustively test-
ing resource interactions to spot failures can be very challenging.
However, in order to address this challenge, having robust, well-
documented, and publicly available datasets for mobile application
testing is necessary.
Proposal: This paper proposes the Resource Interaction Challenge
targeting mobile applications. We introduce a curated dataset of 20
mobile applications with varying sizes (up to 350K lines of code)
and required resources (Bluetooth, Wi-Fi, etc.). Due to the shortage
of sampling strategies for testing resource interactions in mobile
applications, we opted for strategies commonly used for config-
urable systems in general. Our dataset includes failures detected
and source code metrics computed for each mobile application.
Conclusion: We expect to engage both researchers and practitioners
in reusing our dataset, especially to propose and evaluate novel
testing strategies.

CCS CONCEPTS
• Software and its engineering → Software configuration
management and version control systems; Software testing
and debugging.
KEYWORDS
Mobile Application Testing; Resource Interaction Failures;

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SPLC ’24, September 2–6, 2024, Luxembourg City, Luxembourg
© 2024 Association for Computing Machinery.
ACM ISBN 978-1-4503-7569-6/20/10. . . $15.00
https://doi.org/10.1145/3382025.3414725

ACM Reference Format:
Euler Marinho, Fischer Ferreira, Eduardo Fernandes, João Paulo Diniz,
and Eduardo Figueiredo. 2024. Resource Interaction Failures in Mobile Ap-
plications: A Challenge for the Software Product Line Testing Community
. In 28th ACM International Systems and Software Product Line Conference
(SPLC ’24), September 2–6, 2024, Luxembourg City, Luxembourg. ACM, New
York, NY, USA, 6 pages. https://doi.org/10.1145/3382025.3414725

1 INTRODUCTION
Mobile applications have been used for multiple purposes including
entertainment, management of personal information, and control
of devices, such as home security systems, health monitors, and
cars [3]. Therefore, mobile applications have been developed not
only for entertainment purposes but also for targeting safety and
critical domains. As a consequence, the quality of mobile appli-
cations has become a crucial aspect, for instance, by promoting
the use of testing as a quality assurance practice [20]. Neverthe-
less, the particularities of mobile applications set them apart from
other kinds of applications, such as Desktop orWeb Systems, where
traditional testing approaches can be applied [14]. The growing
awareness for mobile application quality has resulted in a broad
spectrum of testing techniques [20, 21]. However, despite the avail-
ability of testing methods, techniques, and tools, the field of mobile
application testing is still under development [15].

Mobile applications are often executed on a variety of platform
configurations [17] and each platform configuration has different
platform resources. These resources may be related to communi-
cation capabilities (e.g., Wi-Fi, Bluetooth, Mobile Data, and GPS),
sensors (e.g., Accelerometer, Gyroscope, and Magnetometer), and
user-controlled options (e.g., Battery Saver and Do Not Disturb).
Some resources can be directly managed by means of system-level
settings, for example, the Android Quick Settings, allowing users
to customize many system or application behaviors [24]. However,
applications can present unexpected behaviors since the resource
interactions can introduce failures that manifest themselves in spe-
cific resource combinations [25].

Resource interaction occurs when one or more resources in-
fluence the behavior of other resources, similarly to the feature
interaction problem in configurable software systems [5, 6] and
telecommunication systems [9]. An example of resource interaction
failure occurs for Commons App when a pair of resources are dis-
abled [42]. The high number of input combinations is a challenging
aspect for testing software systems in general, since the effort of
the exhaustive testing is generally prohibitive. For instance, it is

https://doi.org/10.1145/3382025.3414725
https://doi.org/10.1145/3382025.3414725

SPLC ’24, September 2–6, 2024, Luxembourg City, Luxembourg Marinho, et al.

the case of configurable systems [5, 12, 16] in which all tests must
be executed in several configurations. An alternative for decreasing
the testing effort is the use of sampling strategies involving the
selection of a subset of input combinations. Sampling strategies
are a well known technique, such as in the domain of configurable
systems [5]. Several sampling strategies have been proposed and
investigated in the literature, such as t-wise [16], one-disabled [1],
and most-enabled-disabled [27]. They have been shown to be effec-
tive in finding faults, even with the number of combinations tested
much lower than the universe of all possible combinations [27, 40].

Resource interaction failures have been explored in mobile ap-
plications testing [24, 26, 42]. However, the investigation of these
failures is a still little explored aspect of research. We lack work to
evaluate resource interaction failures in real mobile applications,
verify which resources are most related to failures, and investigate
the faults behind these failures. Testers may neglect to properly
test mobile applications considering the interaction of resources
due to a lack of knowledge of such failures. Therefore, resource
interaction failures may occur in the everyday use of the mobile
application but they may be imperceptible in the testing phase.

In this context, we contribute to the research of mobile appli-
cation testing with a dataset composed of 20 applications with
instrumented tests proposed in our prior work [26].

We propose the use of the number of failures traditional metric
and a metric for verifying the efficiency of the proposed testing
strategy. Through these metrics, it is possible to measure the fault-
detection capability of the proposed testing strategies and the most
efficient testing strategy.

Challenge: the participants must propose testing strategies for
mobile applications taking resource interactions into account.
The failure detection capability and the efficiency of the strategy
must be higher than our baseline. In other words, the proposed
testing strategies increase the number of unique detected failures
and minimize the number of tested settings.

The dataset of mobile applications with instrumented test suites
and reports of failures can be found at:

https:// eulerhm.github.io/ splc-challenge/

Therefore, we challenge the research community to use their
testing strategies to find resource interaction failures in the target
applications of our proposed dataset. We argue that the provided
dataset is well suited as subjects for the challenge of finding re-
source failures due to the variety of mobile applications and because
each application has an instrumented test suite. We expect partici-
pants to evaluate their solutions by measuring how strongly their
testing strategies can be in finding resource interaction failures in
the applications of our dataset. Each solution could be assessed con-
cerning how efficient the solution is for testing mobile applications.

2 BACKGROUND
This section discusses resource interaction failures (Section 2.1) and
presents an overview of sampling testing strategies (Section 2.2).

2.1 Resource Interaction Failures
We define “resource interaction failures” as failures that occur
when resources influence the behavior of other resources. This
definition is inspired by the feature interaction problem in con-
figurable systems [5]. Our study includes 14 resources often used
by Android applications and present in most devices. Some re-
sources are directly manageable by mobile device users (for in-
stance, Location and Mobile Data) whereas others are restricted
only to more advanced users (e.g., Accelerometer and Gyroscope).
Among the target resources, three are used to manage networks
and connections (Bluetooth, Mobile Data, and Wi-Fi), six to con-
trol sensors (Accelerometer, Gyroscope, Light, Magnetometer,
Orientation, and Proximity), one to control a device’s hardware
element (Camera), one to control a privacy option (Location), and
three to manage user-controlled options (Auto Rotate, Battery
Saver, and Do Not Disturb).

Figure 1 presents a code excerpt of Wikimedia Commons Android
app, showing a case of a resource interaction failure [42]. This open
source application allows users to upload pictures from the device
to Wikimedia Commons, the image repository for Wikipedia1. The
Android Platform supports the positioning via GPS or network (Wi-
Fi/Mobile Data). The issue describes a situation involving the crash
of the application when it is opened and both GPS and network are
disabled [7]. The failure is caused by the call of getLastKnownLo-
cation to get the current location via network (line 3). However,
this call returns a null value which is later used in the construction
of an object to store the location-related values (line 5). As a result,
the application crashes because of a NullPointerException.

1 l o ca t i onManage r . ge tLas tKnownLoca t ion (
Locat ionManager . GPS_PROVIDER) ;

2 i f (l a s tKL == null) {
3 l a s tKL = loca t i onManage r . ge tLas tKnownLoca t ion

(Locat ionManager . NETWORK_PROVIDER) ;
4 }
5 return LatLng . from (l a s tKL) ; / / An o b j e c t i s

c o n s t r u c t e d from th e l a t i t u d e and
l o n g i t u d e c o o r d i n a t e s

Figure 1: Code Excerpt fromWikimedia Commons app.

In another example, we illustrate by means of an issue of Traccar
Client2 how the combination of platform resources and applica-
tion settings may lead to an unexpected failure of the application.
Traccar Client is an open source application available for down-
load at Google Play Store. In summary, it is a GPS Tracker, which
communicates with its own application server. Traccar Client has
a configuration called Accuracy, which can be set to three values:
High, Medium, or Low. To achieve the Accuracy High, it is neces-
sary that the GPS, Wi-Fi, Mobile Data, and Bluetooth sensors are
enabled on the smartphone. According the the issue #390, opened
at the Traccar issue manager at GitHub3, it can be seen that, even

1https://commons-app.github.io/
2https://www.traccar.org
3https://github.com/traccar/traccar-client-android/issues/390

https://eulerhm.github.io/splc-challenge/
https://commons-app.github.io/

Resource Interaction Failures in Mobile Applications: A Challenge for the SPL Testing Community SPLC ’24, September 2–6, 2024, Luxembourg City, Luxembourg

if the four sensors are enabled, the application stops changing loca-
tion when its Accuracy is set do Medium. However, works again
for the other two possible values, i.e., High and Low.

2.2 Sampling Testing Strategies
Sampling strategies are commonly used to test configurable soft-
ware systems [1, 16, 27, 40]. Exhaustive testing of configurable
systems encompasses the exploration of a configuration space, i.e.,
the combination of all input options that can be used to configure a
system [40]. The validity of a configuration is often determined by
a feature model. As the exhaustive exploration of this space is often
very expensive or even impractical (for instance, by brute-force), an
alternative to balance the effort and the failure-detection capability
is to use sampling testing strategies. The effort can be measured
considering the size of the sample set (related to the test execution
time), whereas the failure-detection capability can be associated to
the number of failures detected by the sampled configurations [27].

The use of sampling testing has been promising to find feature
interaction failures [1, 16, 27, 40] and resource interaction fail-
ures [26]. The strategy One-Disabled [1] selects settings with only
one resource disabled and all other resources enabled. The strategy
One-Enabled selects settings with only one resource enabled and
the other resources disabled. The strategyMost-Enabled-Disabled
combines two sets of samples: one set in which most of the re-
sources are enabled and other set in which most of the resources
are disabled. In the case when constraints between resources do
not exist, it establishes two settings: one with all resources enabled
and one with all resources disabled [27]. The strategy Random
creates 𝑛 distinct settings with all resources randomly enabled or
disabled. We used the implementation of this strategy present in
FeatureIDE [44].

In a t-wise combinatorial interaction testing, each combination
of 𝑡 resources is required to appear in at least one setting of the
sample, i.e., only the subset of settings that covers a valid group
of 𝑡 resources being enabled and disabled actually matters [31].
Generating such configurations can be modeled as a covering array
problem instance. However, this optimization is NP-hard and sev-
eral heuristics have been proposed to perform t-wise sampling [2].

In this context, we encourage the community to use our dataset
as it provides instrumented test suites for each application. As an
advantage of our challenge, testing strategies can benefit from the
available test suites. Moreover, the dataset of mobile applications
and resource interaction failures is a unique opportunity for us to
characterize them. For instance, a deep understanding of resource
interaction failures in mobile applications may help practitioners
to identify the reasons for failures that occur in their applications.

3 DATASET OVERVIEW
In this section, we provide an overview of the proposed dataset.
Section 3.1 presents the metrics that characterize the proposed
dataset. We provide a summary of the dataset in Section 3.2. Section
3.3 shows an overview of the test suite instrumentation process
for mobile applications. Section 3.4 presents a motivating example
of using the dataset. In Section 3.5, we present the failures found
in the proposed dataset. Finally, Section 3.6 describes the dataset
artifacts.

3.1 Evaluation Metrics
For a better comprehension of the subject applications in our dataset,
we collected static metrics with two different tools. Metrics related
to the size of the mobile applications (e.g., lines of code and num-
ber of packages) were computed by CLOC tool and CodeMR.
CLOC [10] is an open-source tool to count lines of source code in
multiple programming languages. CodeMR [11] is a static analysis
tool for Java and Kotlin languages, installed as a plugin for Android
Studio IDE.

3.2 Mobile Application Dataset
Table 1 presents an overview of the 20 mobile applications that
compose our dataset. We provide additional information about the
proposed dataset in our supplementary website 4. These applica-
tions belong to different categories, named according to the Play
Store categories, with a large variation of size and test code size.
The columns of Table 1 represent the applications’ name, descrip-
tion, size, test suite metrics, and resources. We discuss each of these
metrics next.

Size metrics. We selected applications of different sizes. We
measure the number of lines of code (#LOC), packages (#Packages),
classes (#Classes), and methods (#Methods). The applications in
our dataset vary from 455 lines of code (MoonShot) to more than
347,000 lines of code (WordPress-Android). Similarly, whileNekome
has 29 classes andWordPress-Android has almost 4,180 classes.

Test suite metrics. We report the number of test cases and the
lines of code of each test suite. The variety of sizes and charac-
teristics of the applications of our dataset can be a challenge for
candidate solutions. In this way, we encourage participants to apply
their strategies to our dataset and report on which situations their
test strategies provide the best results.

3.3 Test Suite Instrumentation
We implemented a test instrumentation based on the UI Automator
framework5 to control the resources. The instrumentation is based
on Android instrumented tests, i.e., a type of functional test6. They
execute on devices or emulators and can interact with Android
framework APIs. The following resources are manageable bymobile
device users:Auto Rotate, Battery Saver, Bluetooth,DoNot Disturb,
Location,Mobile Data, andWi-Fi. Therefore, we enable or disable
these resources interactingwith Android Quick Settings.We control
the other resources using third-party applications. For instance,
Camera is controlled by Lens Cap7 and the sensors are managed
by Sensor Disabler8. This application requires a rooted Android
device9.

In this study, we named an input combination as a setting, i.e., a
set of resources whose states (enabled or disabled) are previously
defined. A setting is a 14-tuple of pairs (resource, state) where
state can be True or False depending on whether the resource
is enabled or disabled. The test instrumentation consists of the
function AdjustResourceStates presented in Algorithm 1. For the
4https://eulerhm.github.io/splc-challenge/.
5https://developer.android.com/training/testing/ui-automator
6https://developer.android.com/training/testing/instrumented-tests
7https://github.com/percula/LensCap
8https://github.com/wardellbagby/Sensor-Disabler
9https://en.wikipedia.org/wiki/Rooting_(Android)

https://eulerhm.github.io/splc-challenge/
https://developer.android.com/training/testing/ui-automator
https://developer.android.com/training/testing/instrumented-tests
https://github.com/percula/LensCap
https://github.com/wardellbagby/Sensor-Disabler
https://en.wikipedia.org/wiki/Rooting_(Android)

SPLC ’24, September 2–6, 2024, Luxembourg City, Luxembourg Marinho, et al.

Table 1: The Dataset

Name Description Size metrics Test Suite metrics
Category Commits #LOC #Packages #Classes #Methods #Test #LOCTest

AnkiDroid [4] Education 13,643 158,607 52 695 3,575 164 2,770
CovidNow [13] Medical 85 2,269 42 811 252 21 540
Ground [18] Productivity 4,936 19,906 51 412 1,676 4 525
Iosched [19] Books,

Reference
3,101 27,824 29 307 1,333 9 473

Lockwise [23] Productivity 503 14,535 12 350 1,124 38 1,184
Mixin-Messenger [28] Finance 8,086 168,080 136 2,212 12,025 160 3,732
Moonshot [29] Tools 351 455 7 48 196 28 464
Nekome [30] Productivity 2,742 1,084 4 29 62 64 2,097
Nl-covid19 [32] Medical 1,293 65,839 26 311 634 20 1,114
OpenScale [33] Health,

Fitness
2,742 27,781 19 174 1,046 14 1,451

OwnTracks [34] Travel, Local 1,995 14,499 37 273 1,176 27 889
PocketHub [36] Productivity 3,512 29,001 40 323 1,332 107 1,663
Radio-Droid [37] Music 1,186 22,815 25 207 810 23 1,735
Scarlet-Notes [38] Productivity 656 4,260 5 51 228 52 770
Showly-2.0 [39] Entertainment 3,251 2,547 8 29 173 55 952
SpaceX-Follower [41] News,

Magazines
356 7,664 22 110 526 30 940

Threema [43] Communication 21 238,045 123 1,718 9,763 54 1,931
Vocable [45] Communication 863 13,188 14 106 534 14 499
Woo-Commerce [46] Business 26,527 156,962 120 2,283 8,334 27 1,367
WordPress-Android [47] Productivity 68,148 347,897 240 4,175 15,292 115 3,674

required setting 𝑆 , we enable (line 6) or disable (line 8) each resource
state (line 4) according to the state specified in the pair.

We implemented Resource_setup as a class with a static method
annotated with BeforeClass10. We extended each class of the test
suites with the implemented class. Therefore, the execution of tests
of a certain class is preceded by the execution of the setup method.
In the current implementation, we perform the verification of re-
source state (line 5) via Android APIs, such as LocationManager11
for the Location and TelephonyManager12 for the Mobile Data.
In other cases, we use the UI Automator features to find some screen
widgets related to the resource state. For example, we inspect the
sensors states by processing screens of Sensor Disabler. It is impor-
tant to emphasize that in our implementation the resources are only
adjusted (lines 6 and 8) if necessary. Besides, we modified the build
scripts in order to use the Android Test Orchestrator13, a tool that
helps minimize possible shared states, a known factor associated
to flaky tests [35] and isolate the crashes.

Algorithm 1 Resource_setup
1: Input
2: S list of < 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒, 𝑠𝑡𝑎𝑡𝑒 > pairs
3: procedure AdjustResourceStates(𝑆)
4: for all 𝑝𝑎𝑖𝑟 ∈ 𝑆 do
5: if 𝑝𝑎𝑖𝑟 .𝑠𝑡𝑎𝑡𝑒 == true then
6: enable(𝑝𝑎𝑖𝑟 .𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒)
7: else
8: disable(𝑝𝑎𝑖𝑟 .𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒)
9: end if
10: end for
11: end procedure

We implemented Algorithm 2 for managing the executions of
the instrumented test suites. We used three executions (line 6) to
deal with flaky tests, and shuffled the settings to minimize order
10https://junit.org/junit4/javadoc/4.12/org/junit/BeforeClass.html
11https://developer.android.com/reference/android/location/LocationManager
12https://developer.android.com/reference/android/telephony/TelephonyManager
13https://developer.android.com/training/testing/junit-runner

dependencies between tests (line 8). Multiple execution is a common
strategy for detecting flaky tests. However, the optimal number
of re-executions to identify flaky tests is not clear [35]. One study
suggests a maximum of five re-executions [22]. Based on previous
essays, we set the number of re-executions to three. We empirically
made the observation that this number is sufficient to detect flaky
tests. We call the function AdjustResourceStates (line 10) defined
in Algorithm 1 to adjust the states of all resources.

Algorithm 2 Test_execution_manager
1: Input
2: AP application with extended tests
3: SL list of settings
4: Output
5: TR test reports
6: 𝑚𝑎𝑥𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛𝑠 ← 3
7: for 𝑒𝑥𝑒𝑐 ← 1 to𝑚𝑎𝑥𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛𝑠 do
8: shuffle(𝑆𝐿)
9: for all 𝑠𝑡 ∈ 𝑆𝐿 do
10: AdjustResourceStates(𝑠𝑡)
11: Execute the whole test suite of 𝐴𝑃
12: end for
13: end for

3.4 Example of Use
In this section, we present an example of mobile application in
our dataset. We show our framework for running the test suite.
With the support of our framework, participants can use the test
suite for each setting that their testing strategies produce. Vocable
is a communication tool for individuals who are speech impaired.
According to the application website14, Vocable uses the ARCore
SDK15 to track the user’s head movements and understand where
the user is looking on the screen.

14https://github.com/willowtreeapps/vocable-android
15https://developers.google.com/ar

https://junit.org/junit4/javadoc/4.12/org/junit/BeforeClass.html
https://developer.android.com/reference/android/location/LocationManager
https://developer.android.com/reference/android/telephony/TelephonyManager
https://developer.android.com/training/testing/junit-runner
https://github.com/willowtreeapps/vocable-android
https://developers.google.com/ar

Resource Interaction Failures in Mobile Applications: A Challenge for the SPL Testing Community SPLC ’24, September 2–6, 2024, Luxembourg City, Luxembourg

Table 2: Failure Report

Name FS SE #Failures

CovidNow 32 0.47 2
Lockwise 68 1.00 4
Mixin-Messenger 20 0.29 2
Nl-covid19 55 0.81 6
OwnTracks 68 1.00 3
PocketHub 4 0.06 1
SpaceXFollower 68 1.00 4
Threema 33 0.48 1
Vocable 24 0.35 7
WordPress-Android 37 0.54 11
FS stand for the number of failing settings.
SE indicates the Solution Efficiency.
#Failures stand for the unique detected failures.
Total settings (68).

The challenged participants are expected to use our framework
to run the test suite with their testing solution. We emphasise that
the proposed settings are not limited to validity rules as usually
found in configurable systems, e.g. defined by a feature model. We
present a small example to illustrate the use of our framework to
call the test suite for each target system in our dataset. Figure 2
shows a setting for the mobile application Vocable. The settings
must be in a CSV file with only the enabled resources listed. Figure
2 shows a setting with 6 resources enabled. Our instrumentation
considers each line of the file as a setting. According with the line
8 of Algorithm 2, the list of settings is shuffled and the execution
continues for each setting.

Figure 2: Setting example

To exemplify the output, we report a resource interaction failure
for Vocable. The failure we found (e.g., by a test named "verifyDe-
faultTextAppears") happens when Mobile data and Wi-Fi are both
disabled. The failure generates an ARCore Fatal Exception16.

3.5 Failure Report
Table 2 presents a summary of failure reports for each application
in our dataset. We selected applications with failures manifested in
three executions. As we can see, 10 applications present this kind
of failure which represents 50% of the applications in our dataset.
In addition, we can see that 409 failing settings (FS) were found. To
illustrate this, we look at the data related to PocketHub for which
we only found 4 failing settings.

We used five testing strategies [26]: Random,One-Enabled,One-
Disabled, Most-Enabled-Disabled, and Pairwise as a baseline for
reporting failures in mobile applications. A thorough test against
all settings (214 = 16,384) is a costly and even impractical practice.
Therefore, we have chosen the number of 68 settings in total for
each application because it delivers the results in a feasible time.
The number of settings generated by Random was limited to 30.
One-Disabled and One-Enabled generated 14 settings each.Most-
Enabled-Disabled generated 2 settings and Pairwise generated 8
settings. We emphasise that the list of settings for each application
16https://developers.google.com/ar/reference/java/com/google/ar/core/exceptions/
FatalException

does not vary because we control the device resources, as explained
in Section 2.1. The SE column of Table 2 presents a measurement of
solution efficiency. We discuss this metric in Section 3.7. We make
available on the dataset website the failure found, each setting that
failed, and the test cases that observed the reported failures.

3.6 Description of dataset artifacts
The challenge artifacts are available in the companion website of
the dataset, organized into three items. We report the artifacts con-
cerning the Vocable application. However, all other applications
in our dataset follow the same structure.

(1) Source Code: We provide the source code and test suite for
each mobile application 17. These applications were imple-
mented in Java and/or Kotlin.

(2) Found Failures: We provide the found failures for the chal-
lenge applications 18. We present these failures in a CSV file
that contains the identifier of the setting in which the failure
occurred and the test cases that observed the failure.

(3) Analyzed Settings: We provide the settings that we run
with our baseline 19. The setting files follows the model
described in Figure 2.

3.7 Solution evaluation
This section presents the metric that we use to measure how ef-
ficient test strategies for mobile applications can be in observing
failures. We assume that each failing test case corresponds to a
unique failure despite the used test oracle [8]. We provide a set of
failures found in the systems in our dataset. However, it is possible
to find other failures in unvisited settings. We calculate the effi-
ciency according to Equation 1. 𝐹𝑎𝑖𝑙𝑖𝑛𝑔𝑆𝑒𝑡𝑡𝑖𝑛𝑔𝑠 is the amount of
settings that cause at least one failure.𝑇𝑜𝑡𝑎𝑙𝑆𝑒𝑡𝑡𝑖𝑛𝑔𝑠 represents the
total of settings generated by all testing strategies.

SE =
FailingSettings
TotalSettings

(1)

4 CONCLUSION
We proposed a dataset with 20 mobile applications with instru-
mented test suites as a challenge for testing strategies taking re-
source interactions into account. We provide two groups of metrics
(size and test suite) to characterize the proposed dataset for the
challenge. Moreover, we found and reported a total of 409 failing
settings in 10 applications of the proposed dataset.

Several datasets for the mobile application have been used. How-
ever, this dataset is the first dataset for mobile applications with
focused on resource interaction failures [26]. Furthermore, it is
an excellent opportunity to share knowledge on testing strategies
because we use the same test suite towards an unbiased compari-
son of the failure detection capability and the efficiency of testing
strategies for mobile applications. We believe that our dataset can
be a common point of comparison for testing strategies, and we
encourage you to submit your solutions to the proposed challenge.

17https://github.com/eulerhm/splc-challenge/tree/master/Dataset/Vocable
18https://github.com/eulerhm/splc-challenge/tree/master/Found_Failures
19https://github.com/eulerhm/splc-challenge/tree/master/Settings

https://developers.google.com/ar/reference/java/com/google/ar/core/exceptions/FatalException
https://developers.google.com/ar/reference/java/com/google/ar/core/exceptions/FatalException
https://github.com/eulerhm/splc-challenge/tree/master/Dataset/Vocable
https://github.com/eulerhm/splc-challenge/tree/master/Found_Failures
https://github.com/eulerhm/splc-challenge/tree/master/Settings

SPLC ’24, September 2–6, 2024, Luxembourg City, Luxembourg Marinho, et al.

Acknowledgements. This research was partially supported by
Brazilian funding agencies: CAPES, CNPq, and FAPEMIG.

REFERENCES
[1] I. Abal, C. Brabrand, and A. Wasowski. 2014. 42 Variability Bugs in the Linux

Kernel: A Qualitative Analysis. In Proceedings of the ACM/IEEE International
Conference on Automated Software Engineering (ASE). 421–432.

[2] M. Krieter S. Thüm T. Lochau M. Saake G Al-Hajjaji. 2016. IncLing: efficient
product-line testing using incremental pairwise sampling. In 15th Proceedings of
the ACM SIGPLAN International Conference on Generative Programming: Concepts
and Experiences (GPCE). 144–155.

[3] Domenico Amalfitano, Nicola Amatucci, Atif M. Memon, Porfirio Tramontana,
and Anna Rita Fasolino. 2017. A general framework for comparing automatic
testing techniques of Android mobile apps. Journal of Systems and Software 125
(2017), 322–343.

[4] AnkiDroid. [n.d.]. AnkiDroid. https://github.com/ankidroid/Anki-Android,
Accessed 6-mar-2024.

[5] S. Apel, D. Batory, C. Kastner, and G. Saake. 2013. Feature-oriented software
product Lines. Springer Berlin / Heidelberg.

[6] S. Apel, S. Kolesnikov, N. Siegmund, C. Kästner, and B. Garvin. 2013. Explor-
ing Feature Interactions in the Wild: The New Feature-Interaction Challenge.
In Proceedings of the 5th International Workshop on Feature-Oriented Software
Development (FOSD). 1––8.

[7] Commons App. [n.d.]. Commons Issue 1735. https://github.com/commons-
app/apps-android-commons/issues/1735, Accessed 6-mar-2024.

[8] E. Barr, M. Harman, P. McMinn, M. Shahbaz, and S. Yoo. 2015. The oracle problem
in software testing: a survey. IEEE Transactions on Software Engineering 41 (2015),
507–525. Issue 5.

[9] T. F. Bowen, F. S. Dworack, C. Chow, N. Griffeth, G. E. Herman, and Y-J Lin. 1989.
The feature interaction problem in telecommunications systems. In Proceedings
of the 7th International Conference on Software Engineering for Telecommunication
Switching Systems (SETSS). 59–62.

[10] cloc. [n.d.]. cloc. https://github.com/mauricioaniche/ck, Accessed 6-mar-2024.
[11] codeMR. [n.d.]. codeMR. https://plugins.jetbrains.com/plugin/10811-codemr,

Accessed 6-mar-2024.
[12] M. B. Cohen, M. B. Dwyer, and J. Shi. 2007. Interaction Testing of Highly-

Configurable Systems in the Presence of Constraints. In Proceedings of the
ACM SIGSOFT International Symposium on Software Testing and Analysis (IS-
STA). 129–139.

[13] CovidNow. [n.d.]. CovidNow. https://github.com/OMIsie11/CovidNow, Accessed
6-mar-2024.

[14] L. Cruz, R. Abreu, and D. Lo. 2019. To the attention of mobile software developers:
guess what, test your app! Empirical Software Engineering (EMSE) 24 (2019), 2438–
2468.

[15] C. Escobar-Velásquez, M. Linares-Vásquez, G. Bavota, M. Tufano, K. Moran, M.
Di Penta, C. Vendome, C. Bernal-Cárdenas, and D. Poshyvanyk. 2020. Enabling
Mutant Generation for Open- and Closed-Source Android Apps. IEEE Transactions
on Software Engineering (TSE) 48, 1 (2020), 186–208.

[16] F. Ferreira, G. Vale, J. P. Diniz, and E. Figueiredo. 2021. Evaluating T-wise testing
strategies in a community-wide dataset of configurable software systems. Journal
of Systems and Software (JSS) (2021), 110990.

[17] J. A. Galindo, H. Turner, D. Benavides, and J. White. 2016. Testing variability-
intensive systems using automated analysis: an application to Android. Software
Quality Journal 24 (2016), 365–405.

[18] Ground. [n.d.]. Ground. https://github.com/google/ground-android, Accessed
6-mar-2024.

[19] Iosched. [n.d.]. Iosched. https://github.com/google/iosched, Accessed 6-mar-
2024.

[20] Misael C Júnior, Domenico Amalfitano, Lina Garcés, Anna Rita Fasolino, Stevão A
Andrade, and Márcio Delamaro. 2022. Dynamic Testing Techniques of Non-
functional Requirements in Mobile Apps: A Systematic Mapping Study. ACM
Computing Surveys (CSUR) 54, 10s (2022), 1–38.

[21] P. Kong, L. Li, J. Gao, K. Liu, T. F. Bissyandé, and J. Klein. 2018. Automated testing
of Android apps: A systematic literature review. IEEE Transactions on Reliability
68, 1 (2018), 45–66.

[22] W. Lam, S. Winter, A. Astorga, V. Stodden, and D. Marinov. 2020. Understanding
reproducibility and characteristics of flaky tests through test reruns in Java
projects. In Proceedings of the IEEE International Symposium on Software Reliability
Engineering (ISSRE). 403–413.

[23] Lockwise. [n.d.]. Lockwise. https://github.com/mozilla-lockwise/lockwise-
android, Accessed 6-mar-2024.

[24] Y. Lu, M. Pan, J. Zhai, T. Zhang, and X. Li. 2019. Preference-wise testing for An-
droid applications. In Proceedings of the ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering
(ESEC/FSE). 268–278.

[25] E. H. Marinho, J. P. Diniz, F. Ferreira, and E. Figueiredo. 2021. Evaluating Sensor
Interaction Failures in Mobile Applications. In International Conference on the
Quality of Information and Communications Technology (QUATIC). Springer, 49–
63.

[26] E. H. Marinho, F. Ferreira, J. P. Diniz, and E. Figueiredo. 2023. Evaluating testing
strategies for resource related failures in mobile applications. Software Quality
Journal (2023), 1–27.

[27] F. Medeiros, C. Kästner, M. Ribeiro, R. Gheyi, and S. Apel. 2016. A comparison of
10 sampling algorithms for configurable systems. In Proceedings of the IEEE/ACM
International Conference on Software Engineering (ICSE). IEEE, 643–654.

[28] Mixin-Messenger. [n.d.]. Mixin-Messenger. https://github.com/MixinNetwork/
android-app, Accessed 6-mar-2024.

[29] Moonshot. [n.d.]. Moonshot. https://github.com/haroldadmin/MoonShot,
Accessed 6-mar-2024.

[30] Nekome. [n.d.]. Nekome. https://github.com/Chesire/Nekome, Accessed 6-mar-
2024.

[31] C. Nie and H. Leung. 2011. A survey of combinatorial testing. ACM Computing
Surveys (CSUR) 43, 2 (2011), 1–29.

[32] Nl-covid19. [n.d.]. Nl-covid19. https://github.com/minvws/nl-covid19-
notification-app-android, Accessed 6-mar-2024.

[33] OpenScale. [n.d.]. OpenScale. https://github.com/oliexdev/openScale, Accessed
6-mar-2024.

[34] OwnTracks. [n.d.]. OwnTracks. https://github.com/owntracks/android, Accessed
6-mar-2024.

[35] O. Parry, G. M. Kapfhammer, M. Hilton, and P. McMinn. 2021. A Survey of Flaky
Tests. ACM Transactions on Software Engineering and Methodology (TOSEM) 31,
1, Article 17 (2021), 74 pages.

[36] PocketHub. [n.d.]. PocketHub. https://github.com/pockethub/PocketHub,
Accessed 6-mar-2024.

[37] Radio-Droid. [n.d.]. Radio-Droid. https://github.com/segler-alex/RadioDroid,
Accessed 6-mar-2024.

[38] Scarlet-Notes. [n.d.]. Scarlet-Notes. https://github.com/BijoySingh/Scarlet-Notes,
Accessed 6-mar-2024.

[39] Showly-2.0. [n.d.]. Showly-2.0. https://github.com/michaldrabik/showly-2.0,
Accessed 6-mar-2024.

[40] S. Souto, M. d’Amorim, and R. Gheyi. 2017. Balancing soundness and efficiency
for practical testing of configurable systems. In Proceedings of the IEEE/ACM
International Conference on Software Engineering (ICSE). IEEE, 632–642.

[41] SpaceXFollower. [n.d.]. SpaceXFollower. https://github.com/OMIsie11/
SpaceXFollower, Accessed 6-mar-2024.

[42] J. Sun, T. Su, J. Li, Z. Dong, G. Pu, T. Xie, and Z. Su. 2021. Understanding and
Finding System Setting-Related Defects in Android Apps. In Proceedings of the
ACM SIGSOFT International Symposium on Software Testing and Analysis (ISSTA).
204–215.

[43] Threema. [n.d.]. Threema. https://github.com/threema-ch/threema-android,
Accessed 6-mar-2024.

[44] T. Thüm, C. Kästner, F. Benduhn, J. Meinicke, G. Saake, and T. Leich. 2014. Fea-
tureIDE: An extensible framework for feature-oriented software development.
Science of Computer Programming 79 (2014), 70–85.

[45] Vocable. [n.d.]. Vocable. https://github.com/willowtreeapps/vocable-android,
Accessed 6-mar-2024.

[46] Woo-Commerce. [n.d.]. Woo-Commerce. https://github.com/woocommerce/
woocommerce-android, Accessed 6-mar-2024.

[47] WordPress-Android. [n.d.]. WordPress-Android. https://github.com/wordpress-
mobile/WordPress-Android, Accessed 6-mar-2024.

https://github.com/ankidroid/Anki-Android
https://github.com/commons-app/apps-android-commons/issues/1735
https://github.com/commons-app/apps-android-commons/issues/1735
https://github.com/mauricioaniche/ck
https://plugins.jetbrains.com/plugin/10811-codemr
https://github.com/OMIsie11/CovidNow
https://github.com/google/ground-android
https://github.com/google/iosched
https://github.com/mozilla-lockwise/lockwise-android
https://github.com/mozilla-lockwise/lockwise-android
https://github.com/MixinNetwork/android-app
https://github.com/MixinNetwork/android-app
https://github.com/haroldadmin/MoonShot
https://github.com/Chesire/Nekome
https://github.com/minvws/nl-covid19-notification-app-android
https://github.com/minvws/nl-covid19-notification-app-android
https://github.com/oliexdev/openScale
https://github.com/owntracks/android
https://github.com/pockethub/PocketHub
https://github.com/segler-alex/RadioDroid
https://github.com/BijoySingh/Scarlet-Notes
https://github.com/michaldrabik/showly-2.0
https://github.com/OMIsie11/SpaceXFollower
https://github.com/OMIsie11/SpaceXFollower
https://github.com/threema-ch/threema-android
https://github.com/willowtreeapps/vocable-android
https://github.com/woocommerce/woocommerce-android
https://github.com/woocommerce/woocommerce-android
https://github.com/wordpress-mobile/WordPress-Android
https://github.com/wordpress-mobile/WordPress-Android

	Abstract
	1 Introduction
	2 BACKGROUND
	2.1 Resource Interaction Failures
	2.2 Sampling Testing Strategies

	3 DATASET OVERVIEW
	3.1 Evaluation Metrics
	3.2 Mobile Application Dataset
	3.3 Test Suite Instrumentation
	3.4 Example of Use
	3.5 Failure Report
	3.6 Description of dataset artifacts
	3.7 Solution evaluation

	4 CONCLUSION
	References

