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ABSTRACT
Highly configurable software systems play crucial roles in real-
world applications, which urgently calls for useful testing methods.
Combinatorial interaction testing (CIT) is an effective methodology
for detecting those faults that are triggered by the interaction of
any 𝑡 options, where 𝑡 is the testing strength. Pairwise testing, i.e.,
CIT with 𝑡 = 2, is known to be the most practical and popular
CIT technique, and the pairwise covering array generation (PCAG)
problem is the most critical problem in pairwise testing. Due to
the practical importance of PCAG, many PCAG algorithms have
been proposed. Unfortunately, existing PCAG algorithms suffer
from the severe scalability problem. To this end, the SPLC Scal-
ability Challenge (i.e., Product Sampling for Product Lines: The
Scalability Challenge) has been proposed since 2019, in order to
motivate researchers to develop practical PCAG algorithms for
overcoming this scalability problem. In this work, we present a
practical PCAG algorithm dubbed SamplingCA-ASF . To the best
of our knowledge, our experiments show that SamplingCA-ASF
is the first algorithm that can generate PCAs for Automotive02
and Linux, the two hardest and largest-scale instances in the SPLC
Scalability Challenge, within reasonable time. Our experimental
results indicate that SamplingCA-ASF can effectively alleviate the
scalability problem in pairwise testing.

CCS CONCEPTS
• Software and its engineering→ Software testing and debug-
ging; Search-based software engineering.
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1 INTRODUCTION
To satisfy the increasing demands for software customization, the
development of highly configurable software systems is essential
in real-world applications and hence draws much attention from
academia and industry [5, 19, 28–33, 42]. Highly configurable soft-
ware systems provide practitioners with many configuration op-
tions, so practitioners can configure software systems to meet their
practical requirements [1, 36]. However, it is recognized that effec-
tively testing such highly configurable software systems is difficult,
since the number of possible configurations grows exponentially
with the increment in the number of option [30–32]. For example,
given a configurable software system with 100 options, where each
option has 2 possible values, there can be 2100 possible configu-
rations to test. As a result, testing all possible configurations is
impractical in real-world applications.

Combinatorial interaction testing (CIT) is a practical and ef-
fective methodology for disclosing the option-interaction related
faults caused by combinations of any 𝑡 options, where 𝑡 is the test-
ing strength [30, 32, 39, 52]. Pairwise testing, i.e., CIT with 𝑡 = 2,
is the most popular CIT approach in practice [22, 23, 32]. Com-
pared to CIT with large values of 𝑡 , pairwise testing can construct
a test suite of much small size while keeping high capability of
fault identification. Also, a number of empirical studies [22, 23] on
highly configurable software systems demonstrate that pairwise
testing is able to detect the majority of faults, which confirms the
effectiveness of pairwise testing in practical scenarios.

For practical configurable software systems, there usually ex-
ist hard constraints on options, such as functional dependencies
and exclusiveness. Each adopted test case needs to satisfy all con-
straints, since using a test case that violates any constraint would
incur inaccurate testing outcome [43]. A test case is valid if it satis-
fies all constraints. A pairwise tuple, also known as a 2-wise tuple,
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is a combination of values of exactly two options, and a pairwise
tuple is valid if it is covered by at least one valid test case. The
task of pairwise testing is to generate a pairwise covering array
(PCA), which is a set of valid test cases covering all valid pairwise
tuples. Since the size of PCA (i.e., the number of valid test cases in
PCA) directly affects the testing budget, the most essential prob-
lem in pairwise testing is the problem of pairwise covering array
generation (PCAG), which aims to build a PCA of minimum size.

Because of the importance of PCAG, many PCAG algorithms
have been developed (e.g., [2, 4, 7, 7–18, 21, 24–26, 28–30, 32, 35,
47, 48, 50, 51, 53–55]). However, existing PCAG algorithms suffer
from the serious scalability problem [44, 49]. That is, when deal-
ing with highly configurable software systems that expose many
options, existing PCAG algorithms usually produce test suites of
unacceptably large sizes, do not terminate, or even fail to generate
test suites in reasonable time [44, 49]. Since the scalability problem
is of high severity, the SPLC Scalability Challenge (i.e., Product
Sampling for Product Lines: The Scalability Challenge) [44] has
been proposed since 2019. This SPLC Scalability Challenge presents
two challenging PCAG instances, both of which are collected from
highly configurable software systems with tens of thousands of
configuration options, i.e., Automotive02 and Linux. These two
highly configurable software systems are known to play crucial
roles in real-world applications, which urgently calls for practical
solutions. Unfortunately, to the best of our knowledge, in the litera-
ture there is no existing PCAG algorithm that could generate PCAs
within reasonable time (e.g., 1 day) for Automotive02 and Linux.

In this work, we present a practical sampling-based PCAG algo-
rithm dubbed SamplingCA-ASF . In fact, SamplingCA-ASF is a vari-
ant of our recently-proposed algorithm named SamplingCA [32]
with several modifications. To demonstrate its effectiveness, we per-
form experiments to evaluate SamplingCA-ASF on Automotive02
and Linux. Our experiments present that SamplingCA-ASF gener-
ates a PCA of 58058 test cases for Automotive02 with the running
time of 42842.6 seconds, and SamplingCA-ASF builds a PCA of 2561
test cases for Linux with the running time of 65335.6 seconds.

Our main contributions of this work are summarized as follows.

• We present a practical PCAG algorithm dubbed SamplingCA-
ASF , which can effectively mitigate the scalability problem.
• Our experiments demonstrate that SamplingCA-ASF can suc-
cessfully build PCAs of acceptable sizes for two challeng-
ing instances Automotive02 and Linux within reasonable
running time. To the best of our knowledge, SamplingCA-
ASF is the first PCAG algorithm that can generate PCAs for
Automotive02 and Linux within reasonable running time.

2 PRELIMINARIES
In this section, we provide necessary preliminaries about this work.

2.1 Pairwise Covering Array Generation
We introduce necessary definitions about PCAG as follows.

System Under Test: A system under test 𝑆 , also known as a con-
figurable software system and an instance in this work, is able to be
expressed as a pair 𝑆 = (𝑂,𝐻 ), where notations 𝑂 and 𝐻 stand for
a set of options and a collection of hard constraints, respectively.

Without loss of generality, following recent studies that con-
centrate on testing highly configurable software systems [5, 31, 32,
41, 44], in this work we focus on the binary scenario where each
option has two possible values. For testing highly configurable soft-
ware systems, it has been widely accepted that the general scenario,
where each option has multiple possible values, can be transformed
into the binary scenario (i.e., the one analyzed in this work) in
an effective way [5, 31, 32, 41, 44]. Moreover, the two challenging
PCAG instances (i.e., Automotive02 and Linux) evaluated in this
work are of binary scenario, and both of them are encoded from
the general scenario and are collected from real-world, highly con-
figurable software systems. Therefore, the analysis of the binary
scenario is of significant importance in practice [32].

Test Case: Given an SUT 𝑆 = (𝑂,𝐻 ), a test case tc, also known
as a configuration, is a collection of |𝑂 | pairs, i.e., tc = {(𝑜𝑖 , 𝑟𝑖 ) |
𝑖 is an integer, and 1 ≤ 𝑖 ≤ |𝑂 |}, implying that each option 𝑜𝑖 is
assigned value 𝑟𝑖 . Due to the existence of hard constraints, a test
case tc is valid if tc satisfies all hard constraints in 𝐻 ; otherwise, tc
is invalid. A test suite is a set of test cases.

Pairwise Tuple: A pairwise tuple is a combination of the values of
two options. For example, the pairwise tuple 𝜏 = {(𝑜𝑖 , 𝑟𝑖 ), (𝑜 𝑗 , 𝑟 𝑗 )}
indicates that options 𝑜𝑖 and 𝑜 𝑗 are assigned values 𝑟𝑖 and 𝑟 𝑗 , re-
spectively. Given a pairwise tuple 𝜏 a test case tc, pairwise tuple 𝜏
is covered by test case tc if 𝜏 ⊆ tc. Also, given a pairwise tuple 𝜏
and a test suite𝐴, pairwise tuple 𝜏 is covered by𝐴 if 𝜏 is covered by
at least one test case in 𝐴. Furthermore, a pairwise tuple 𝜏 is valid
if 𝜏 is covered by at least one valid test case; otherwise, 𝜏 is invalid.

Pairwise Covering Array: A pairwise covering array (PCA) 𝑇 is
a test suite, which is comprised of valid test cases and covers all
valid pairwise tuples. In another word, a PCA𝑇 is a set of valid test
cases such that all valid pairwise tuples are covered by 𝑇 .

Pairwise Covering Array Generation: Given an SUT, the problem
of PCA generation (PCAG) is to construct a PCA as small as possible.
The PCAG problem is themost essential problem in pairwise testing,
and it is a challenging combinatorial optimization problem [26, 40].
Hence, developing effective PCAG algorithms is important.

2.2 Boolean Formulae
It is acknowledged that an SUT (i.e., a configurable software system)
is related to a Boolean formula; particularly, an SUT can be effec-
tively modeled as a Boolean formula [3, 5, 6, 31, 32, 36, 41, 44, 45].
Actually, we can deal with a highly configurable system ineffec-
tively via analyzing the modeled Boolean formula [27, 38]. Hence,
this subsection describes key concepts about Boolean formula and
discusses the connection between SUT and Boolean formula.

Given a Boolean variable 𝑥 , the value domain of 𝑥 is {0, 1}. Ac-
tually, Boolean variables are fundamental elements of Boolean for-
mulae. A Boolean variable 𝑥𝑖 and its negative form ¬𝑥𝑖 are lit-
erals, and a disjunction of literals can construct a clause 𝑐 𝑗 , i.e.,
𝑐 𝑗 = 𝑥 𝑗,1 ∨ 𝑥 𝑗,2 ∨ · · · ∨ 𝑥 𝑗,𝑘 𝑗

, where 𝑘 𝑗 is the length of 𝑐 𝑗 . Given
a collection of 𝑛 Boolean variables, a Boolean formula 𝐹 in con-
junctive normal form (CNF) is a conjunction of 𝑚 clauses, i.e.,
𝐹 = 𝑐1 ∧ 𝑐2 · · · 𝑐𝑚 . Given a Boolean formula 𝐹 in CNF, notation
V (F) represents the set of 𝑛 Boolean variables (i.e., |V (F) | = 𝑛), and
notation C (F) stands for the set of𝑚 clauses (i.e., |C (F) | =𝑚).
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Algorithm 1: Skeleton of SamplingCA Algorithm ([32])
Input: 𝐹 : Boolean formula in CNF;
Output:𝑇 : pairwise covering array (PCA) of 𝐹 ;

1 𝛼 ← generate the first, valid test case;
2 𝑇 ← {𝛼 };
3 while True do
4 𝐶 ← construct a candidate collection of valid test cases;
5 𝛽∗ ← select the test case with the largest gain from𝐶 ;
6 if gain of 𝛽∗ is not greater than 0 then break;
7 𝑇 ← 𝑇 ∪ {𝛽∗};
8 foreach possible pairwise tuple 𝜏 of 𝐹 do
9 if 𝜏 is not covered by any test case in𝑇 then
10 Calling SAT solver to justify the validity status of 𝜏 ;
11 if 𝜏 is a valid pairwise tuple then
12 tc ← a test case covering 𝜏 by calling SAT solver;
13 𝑇 ← 𝑇 ∪ {tc};

14 return𝑇 ;

For a Boolean Formula 𝐹 in CNF, a mapping 𝛼 : V (F) → {0, 1}
is an assignment of 𝐹 . Given an assignment 𝛼 , 𝛼 is a complete
assignment if 𝛼 maps all variables in 𝑉 (𝐹 ). Given a clause 𝑐 𝑗 and a
complete assignment 𝛼 , clause 𝑐 𝑗 is satisfied if at least one literal
in 𝑐 𝑗 evaluates to 1 under 𝛼 ; otherwise, 𝑐 𝑗 is unsatisfied. Given a
formula 𝐹 and a complete assignment 𝛼 , if 𝛼 satisfies all clauses in
C (F), 𝛼 is a satisfying assignment (also known as a solution) of 𝐹 .

Given an SUT 𝑆 = (𝑂,𝐻 ) and the Boolean Formula 𝐹 that is
modeled from 𝑆 , it is straightforward that the option set 𝑂 and
the constraint set 𝐻 in SUT 𝑆 correspond to the variable set V (F)
and the clause set C (F) of formula 𝐹 , respectively. A satisfying
assignment of 𝐹 is a valid test case of 𝑆 . Also, a pairwise tuple of 𝑆 is
related to a combination of 𝐹 ’s two literals; for example, the pairwise
tuple {(𝑜𝑖 , 1), (𝑜 𝑗 , 0)} of 𝑆 is related to a combination of 𝐹 ’s two
literals {𝑥𝑖 ,¬𝑥 𝑗 }. Actually, given an SUT 𝑆 and the Boolean formula
𝐹 that is modeled from 𝑆 , the PCAG problem can be understood
as finding a collection of 𝐹 ’s satisfying assignments, such that all
valid pairwise tuples of 𝑆 are covered.

In theory, given a Boolean formula 𝐹 , the problem of finding
one satisfying assignment of 𝐹 is indeed the well-known, Boolean
satisfiability (SAT) problem, which is an NP-complete problem.
Hence, a SAT solver (i.e., a practical algorithm for solving the SAT
problem) is required in PCAG algorithms. In fact, our SamplingCA-
ASF algorithm proposed in this work also invokes an effective SAT
solver called ContextSAT [32]. For technical details of ContextSAT ,
readers can refer to the literature [32].

3 OUR SAMPLINGCA-ASF ALGORITHM
This section presents the SamplingCA-ASF algorithm, which can
effectively generate PCAs for highly configurable software systems.

3.1 Review of Existing SamplingCA Algorithm
As described in Section 1, our SamplingCA-ASF algorithm proposed
in this work is actually a variant of our previous PCAG algorithm
called SamplingCA [32], which exhibit state-of-the-art performance

in PCAG solving. Since SamplingCA serves as a basis of SamplingCA-
ASF , in this subsection we briefly review the SamplingCA algorithm.
For more algorithmic details and technical discussions about the
SamplingCA algorithm, readers can refer to the literature [32].

The skeleton of our previous SamplingCA algorithm [32] is sum-
marized inAlgorithm 1, while thewhole pseudo code of SamplingCA
is outlined in the literature [32]. The input of SamplingCA is a
Boolean formula in CNF, denoted by 𝐹 , and the output of SamplingCA
is a PCA of 𝐹 , denoted by𝑇 . There are three phases in SamplingCA,
i.e., initialization phase (Lines 1 and 2 in Algorithm 1), sampling
phase (Lines 3–7 in Algorithm 1), and full covering phase (Lines
8–13 in Algorithm 1). All these three phases are briefly described
in the following paragraphs.

3.1.1 The Initialization Phase of SamplingCA. In the initialization
phase, SamplingCA aims to generate the first valid test case 𝛼 and
initializes the test suite 𝑇 as the collection including 𝛼 . We would
like to note that in the following phases (i.e., the sampling phase and
the full covering phase), test suite 𝑇 would be repeatedly expanded
through adding newly-generated, valid test cases until 𝑇 covers all
valid pairwise tuples (i.e., 𝑇 becomes a PCA). After all phases are
performed, 𝑇 is the final PCA output by SamplingCA.

3.1.2 The Sampling Phase of SamplingCA. In the sampling phase,
SamplingCA works in an iterative manner, where in each iteration
a valid test case is constructed and added into test suite 𝑇 . In each
iteration, SamplingCA works as follows. First, SamplingCA con-
structs a candidate collection 𝐶 consisting of valid test cases. For
each test case 𝛽 in 𝐶 , 𝛽 is sampled from the entire space of test
cases; after sampling, if 𝛽 is invalid, 𝛽 is altered to be a valid test
through invoking a SAT solver. Then, SamplingCA tries to select
a valid test case from candidate collection 𝐶 and adds the chosen,
valid test case into test suite𝑇 . To accomplish the selection process,
SamplingCA defines an important evaluation metric called gain
[32], so as to quantify the benefit of a test case if it is added into
𝑇 . According to the literature [32], given a test suite 𝑇 and a valid
test case 𝛽 ∉ 𝑇 , the gain of 𝛽 with regard to 𝑇 is the increment in
the number of covered pairwise tuples if 𝛽 is added into 𝑇 . After
candidate collection 𝐶 is constructed, SamplingCA selects the test
case 𝛽∗ with the largest value of gain from 𝐶 . Through this way,
the addition of 𝛽∗ into 𝑇 would increase the number of covered
pairwise tuples as much as possible. Once the gain of the selected
test case 𝛽∗ is not greater than 0, the sampling phase terminates.

3.1.3 The Full Covering Phase of SamplingCA. Since the test suite
returned by the sampling phase does not guarantee to cover all valid
pairwise tuples, in the full covering phase, SamplingCA focuses on
adding a number of valid test cases into 𝑇 in order to make 𝑇
become a PCA. Specifically, in the full covering phase, SamplingCA
enumerates all possible pairwise tuples and checks the validity
status of each possible pairwise tuple 𝜏 : if 𝜏 is a valid pairwise tuple
and is not covered by 𝑇 , then SamplingCA would call a SAT solver
to generate a valid test case covering 𝜏 and adds the generated,
valid test case into 𝑇 . In this manner, the test suite returned by the
full covering phase, which is also the final test suite output by the
entire SamplingCA algorithm, is ensured to be a PCA.

3.1.4 Summary of SamplingCA. As described above, it is apparent
that the sampling phase and the full covering play crucial roles
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in the process of PCA generation, and their effectiveness directly
impacts the practical performance of the SamplingCA algorithm.

3.2 Modifications to SamplingCA Algorithm
The empirical results reported in the literature [32] present that
SamplingCA can generate PCAs for configurable software systems
with around 1000 options. However, in our preliminary experiments,
we try to use SamplingCA to generate PCAs for Automotive02 and
Linux, the two hardest and largest-scale instances presented by the
SPLC Scalability Challenge [44], and our preliminary results show
that SamplingCA cannot generate PCAs for these two instances
within reasonable time (e.g., 1 day). This is not surprising, since
Automotive02 and Linux provide more than 18000 and 76000 op-
tions, respectively, and their problem scales are possibly beyond
the problem scale that SamplingCA can handle.

In this work, we make modifications to SamplingCA, resulting in
a variant of SamplingCA dubbed SamplingCA-ASF , so as to gener-
ate PCAs for those two challenging instances (i.e., Automotive02
and Linux). In particular, we modify the sampling phase and the
full covering phase of the original SamplingCA algorithm, and the
main differences between SamplingCA and SamplingCA-ASF are
highlighted in blue color in Algorithm 1.

3.2.1 Modification to the Sampling Phase of SamplingCA. As dis-
cussed in Section 3.1.2, the evaluation metric of gain plays a critical
role in the sampling phase. Particularly, the time complexity of
calculating the gain of a given test case greatly affects the effi-
ciency of the sampling phase. According to the implementation of
SamplingCA,1 the gain value of 𝛽 equals to the number of valid pair-
wise tuples that are covered by 𝛽 and are meanwhile not covered
by𝑇 . In this way, calculating 𝛽’s gain value needs to traverse all the
valid pairwise tuples that covered by 𝛽 , and hence the time com-
plexity of computing gain for a given test case is O(n2), where 𝑛
denotes the number of options. As aforementioned, Automotive02
and Linux have more than 18000 and 76000 options, respectively,
the operation of calculating gain needs a certain amount of running
time due to the time complexity of O(n2). Moreover, SamplingCA’s
process of PCA generation requires to invoke the operation of cal-
culating gain many times [32], which possibly explains the reason
why SamplingCA cannot generate PCAs for Automotive02 and
Linux within reasonable time.

In order to mitigate this issue, we replace the above method
of gain calculation with the approximated scoring function (ASF)
proposed in our recent study [33]. According to the discussion in
our recent work [33], different from the gain calculation method
adopted by SamplingCA, the ASF method does not calculate the
exact gain value, and it aims to computes an estimated value of
gain in a much efficient way. According to our recent work [33],
the ASF method works as follows. Before entering the sampling
phase, a measuring set𝑀 consisting of pairwise tuples, which are
randomly sampled from the entire space of possible test cases, is
constructed. When quantifying the benefit of a given test case 𝛽 ,
the ASF method estimates 𝛽’s gain value as the increment in the
number of covered pairwise tuples that belong to measuring set 𝑀 .
As discussed and evaluated in the literature [33], the ASF method

1https://github.com/chuanluocs/SamplingCA

not only approximates the exact gain value effectively, but also
runs much more efficient that the method of calculating the exact
gain value. Hence, SamplingCA-ASF is highly efficient through
incorporating the ASF method.

3.2.2 Modification to the Full Covering Phase of SamplingCA. The
test suite 𝑇 returned by the sampling phase is not ensured to cover
all valid pairwise tuples, so there usually exist a number of remain-
ing valid pairwise tuples that are not covered by 𝑇 . As introduced
in Section 3.1.3 and presented in Lines 8–13 in Algorithm 1, in the
full covering phase SamplingCA traverses each possible pairwise
tuple 𝜏 to build the remaining set of all valid pairwise tuples that
are not covered by 𝑇 . For each uncovered, valid pairwise tuple 𝜏 ,
SamplingCA calls a SAT solver to generate a valid test case tc that
covers 𝜏 and then adds tc into 𝑇 . This method of generating one
test case that only targets to cover a single, valid pairwise tuple
would possibly result in a PCA of large size.

It is known that adopting a large-sized PCA to test highly con-
figurable software systems would cost a large amount of testing
budget in practice [31–33] and the ultimate objective of the PCAG
problem is to find a PCA of minimum size, so it is crucial to reduce
the size of generated PCA. Hence, in order to mitigate this severe
issue, we enhance the full covering phase as follows. Compared to
SamplingCA’s original full covering phase that targets to generate a
valid test case for each uncovered, valid pairwise tuple, the modified
full covering phase underlying SamplingCA-ASF performs a repeti-
tive process. In each step of the repetitive process, SamplingCA-ASF
aims to construct a valid test case to cover multiple uncovered, valid
pairwise tuples, rather than just one single uncovered, valid pair-
wise tuple. It is intuitive that through this method SamplingCA-ASF
is able to reduce the number of valid test cases added in the full
covering phase. As a result, compared to the original SamplingCA
algorithm, SamplingCA-ASF is able to generate smaller-sized PCAs.

4 EXPERIMENTS
In this section, we conduct experiments to evaluate the practical
performance of SamplingCA-ASF to generate PCAs for two highly
configurable software systems, i.e., Automotive02 and Linux. Par-
ticularly, we first describe two challenging PCAG instances adopted
in our experiments, and introduce the state-of-the-art competitor.
Then, we present the research question and the experimental setup.
Finally, we report and analyze the experimental results.

4.1 Challenging PCAG Instances
As aforementioned, there are two challenging PCAG instances
that are adopted in our experiments, i.e., Automotive02 and Linux,
both of which are taken from the SPLC Scalability Challenge and
are the hardest and largest-sized instances in the SPLC Scalability
Challenge [44].

The Automotive02 instance is publicly available online,2 and we
use its latest version (i.e., Version: V4) in our experiments. Since our
SamplingCA-ASF algorithm is designed to process Boolean formula,
in our experiments the Automotive02 instance is encoded as a
Boolean formula through the FeatureIDE platform3 [37, 46]. After
2https://github.com/PettTo/SPLC2019_The-Scalability-Challenge_Product-
Lines/blob/master/Automotive02
3https://featureide.github.io/

https://github.com/chuanluocs/SamplingCA
https://github.com/PettTo/SPLC2019_The-Scalability-Challenge_Product-Lines/blob/master/Automotive02
https://github.com/PettTo/SPLC2019_The-Scalability-Challenge_Product-Lines/blob/master/Automotive02
https://featureide.github.io/
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transforming into a Boolean formula, the Automotive02 instance
has 18616 options and 350119 constraints.

The Linux instance is also publicly available online,4 and we
adopt its newest version (i.e., Version: 2018-01-14T09_51_25-08_00)
in our experiments. The Linux instance has been encoded as a
Boolean formula5 by the organizers of the SPLC Scalability Chal-
lenge, so we directly utilize this Boolean formula. The Linux in-
stance in our experiments has 76815 options and 774148 constraints.

For the above procedures for encoding and obtaining the Boolean
formulae of the Automotive02 and Linux instances, we have con-
sulted the organizers of the SPLC Scalability Challenge [44], and
the organizers have kindly confirmed the correctness of our proce-
dures. We note that both Boolean formulae of the Automotive02
and Linux instances are publicly available at our public repository.6

4.2 State-of-the-art PCAG Competitor
In order to demonstrate the effectiveness of our SamplingCA-ASF
algorithm proposed in this work, we adopt the original SamplingCA
algorithm [32] as the state-of-the-art competitor of SamplingCA-
ASF in our experiments. SamplingCA [32] has bee briefly reviewed
in Section 3.1, and it is a recently-proposed, effective algorithm
and exhibits state-of-the-art performance in PCAG solving. As re-
ported in the literature [32], the performance of SamplingCA is
much better than that of other PCAG algorithms when generat-
ing PCAs for highly configurable software systems. Besides the
high performance, SamplingCA serves as the algorithmic basis for
SamplingCA-ASF , so it is instructive to conduct the comparison
between SamplingCA and SamplingCA-ASF . The source code of
SamplingCA is publicly available online.1

4.3 Research Question
To the best of our knowledge, there is no existing PCAG algorithm
that can generate PCAs within reasonable time for those two hard-
est and largest-sized instances in the SPLC Scalability Challenge
[44], i.e., Automotive02 and Linux. Hence, in order to examine
whether our SamplingCA-ASF algorithm alleviates the severe scala-
bility problem, our evaluation of SamplingCA-ASF concentrates on
answering the following research question (RQ).

RQ: Can SamplingCA-ASF generate PCA for these two
challenging instances, i.e., Automotive02 and Linux, within
reasonable running time?

In this RQ, we perform experiments to analyze whether our
SamplingCA-ASF algorithm can generate PCAs for Automotive02
and Linux within acceptable running time.

4.4 Experimental Setup
All experiments in this work are conducted on a computingmachine
equipped with AMD EPYC 7763 CPU AND 1TB memory, and the
operating system installed on that computing machine is Ubuntu
20.04.4 LTS.

As described before, SamplingCA-ASF is a variant of SamplingCA,
and we implement SamplingCA-ASF based on the source code of

4https://github.com/PettTo/Feature-Model-History-of-Linux
5https://github.com/PettTo/Feature-Model-History-of-Linux/blob/master/2018/
2018-01-14T09_51_25-08_00/out.dimacs.zip
6https://github.com/chuanluocs/SamplingCA-ASF

Table 1: Results of SamplingCA-ASF and SamplingCA on the
challenging Automotive02 and Linux instances.

Instance SamplingCA-ASF SamplingCA

size time (sec) size time (sec)
Automotive02 58058 42842.6 – –
Linux 2561 65335.6 – –

SamplingCA [32]. Because the source code of SamplingCA adopts
a Boolean formula preprocessing tool called Coprocessor [34] to
equivalently simplify the Boolean formulae of both Automotive02
and Linux instances, our SamplingCA-ASF algorithm also activates
the same preprocessing tool to simplify these two instances. We
would like to note that the implementation of SamplingCA-ASF is
publicly available at our public repository.6 For both competing
algorithms (i.e., SamplingCA-ASF and SamplingCA), each compet-
ing algorithm is performed one run per PCAG instance, with a
cutoff time of 86400 seconds (i.e., 1 day). In order to make our com-
parison fair, we use the same hyper-parameter settings for both
SamplingCA-ASF and SamplingCA, recommended by the literature
[32]. For each competing algorithm on each PCAG instance, we
report the size of the generated PCA, denoted by ‘size’, and the
running time, denoted by ‘time’. In our experiments, the running
time is measured in second. Furthermore, if a competing algorithm
fails to generate a PCA for a PCAG instance within the cutoff time,
the corresponding results of both ‘size’ and ‘time’ are marked as ‘–’
in our experiments.

4.5 Experimental Results
Table 1 presents the comparative results of SamplingCA-ASF and
SamplingCA on those two challenging Automotive02 and Linux
instances. According to the experimental results reported in Table
1, it is clear that SamplingCA-ASF is able to generate PCAs within
the cutoff time for both challenging Automotive02 and Linux in-
stances, while SamplingCA fails to construct PCAs within the cutoff
time for both of them. As discussed in Section 3.2, it is not surpris-
ing that SamplingCA fails to produce PCAs for both challenging
instances, because both Automotive02 and Linux instances are of
large scale (i.e., the Automotive02 instance has 18616 options, and
the Linux instance has 76815 options), and their scales possibly
exceed the problem scale that the original SamplingCA algorithm
can process.

According to Table 1, SamplingCA-ASF takes 42842.6 seconds to
construct a PCA consisting of 58058 test cases for the Automotive02
instance, and it costs 65335.6 seconds to generate a PCA containing
2561 test cases for the Linux instance. Our experiments clearly
present the superiority of SamplingCA-ASF over SamplingCA on
solving these two challenging instances. More encouragingly, to the
best of our knowledge, currently there is no PCAG algorithm that
can generate PCAs for Automotive02 and Linuxwithin reasonable
time, indicating that SamplingCA-ASF is able to effectively alleviate
the scalability problem in pairwise testing.

Also, we further analyze the quality of the test case generated by
SamplingCA-ASF . Before discussing the results, we first introduce
a useful evaluation metric called pairwise coverage [5, 31]. In the

https://github.com/PettTo/Feature-Model-History-of-Linux
https://github.com/PettTo/Feature-Model-History-of-Linux/blob/master/2018/2018-01-14T09_51_25-08_00/out.dimacs.zip
https://github.com/PettTo/Feature-Model-History-of-Linux/blob/master/2018/2018-01-14T09_51_25-08_00/out.dimacs.zip
https://github.com/chuanluocs/SamplingCA-ASF
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Figure 1: Pairwise coverage achieved by SamplingCA-ASF
with different numbers of test cases on Automotive02.

context of testing highly configurable software systems, pairwise
coverage is broadly recognized to be a powerful evaluation metric
to assess the quality of a test suite, and it plays a crucial role in
this empirical analysis [5, 31]. Given an SUT 𝑆 and a test suite 𝑇 ,
the pairwise coverage of 𝑇 is computed as the ratio between the
number of valid pairwise tuples covered by 𝑇 and the total number
of all possible, valid pairwise tuples for the given SUT 𝑆 . Specifi-
cally, if a test suite 𝑇 is a PCA, then it achieves the full pairwise
coverage (i.e., the pairwise coverage of 100%). It is intuitive that a
test suite with higher pairwise coverage indicates stronger capabil-
ity of fault detection. We illustrate the pairwise coverage achieved
by SamplingCA-ASF through generating different numbers of test
cases for the Automotive02 and Linux instances in Figures 1 and
2, respectively. For Automotive02, compared to generating 58058
test cases for achieving full pairwise coverage, SamplingCA-ASF
only needs to construct 345, 1901 and 9055 test cases to obtain the
pairwise coverage of 90%, 95% and 99%, respectively. Similarly, for
Linux, compared to constructing 2561 test cases for achieving full
pairwise coverage, SamplingCA-ASF only needs to build 9, 13 and
34 test cases to obtain the pairwise coverage of 90%, 95% and 99%,
respectively. Our results clearly demonstrate that our SamplingCA-
ASF algorithm is practical, since it can build a test suite of small
size while preserving high quality.

5 RELATEDWORK
Combinatorial interaction testing (CIT) is an important research
direction in software testing, and has been widely studied in past
decades. Pairwise testing, i.e., CIT with 𝑡 = 2, is recognized to be
a popular and powerful CIT technique for testing highly config-
urable software systems [22, 23, 32]. The PCAG problem is the
most essential problem in pairwise testing, and a large amount of
research effort has been made to develop effective PCAG algorithms
[2, 4, 7, 7–18, 21, 24–26, 28–30, 32, 35, 47, 48, 50, 51, 53–55]). How-
ever, existing PCAG algorithms suffer from the scalability problem
and cannot process large-sized PCAG instances in an effective way.

Due to the high severity of the scalability problem, the SPLC
Scalability Challenge [44] has been organized since 2019. The SPLC
Scalability Challenge presents two difficult instances, which are
collected from two important, highly configurable software sys-
tems, i.e., Automotive02 and Linux. To the best of our knowledge,
prior to this work, there are two solutions [20, 41] submitted to
the SPLC Scalability Challenge. For these two submitted solutions

Figure 2: Pairwise coverage achieved by SamplingCA-ASF
with different numbers of test cases on Linux.

[20, 41], their authors evaluate the performance of a uniform sam-
pling algorithm called Smarch [41] and a 𝑡-wise sampling algorithm
named YASA [21] to generate PCAs for large-scale PCAG instances.
However, Smarch [41] does not guarantee its output test suite to be
a PCA, and the experiments in the solution paper [41] report that
the test suite generated by Smarch obtains low pairwise coverage
for highly configurable software systems. On the other hand, the
work describing YASA [21] indicates that YASA fails to generate
PCAs for the challenging Automotive02 and Linux instances with
the cutoff time of 5 days.

Compared to existing PCAG algorithms and previous solutions,
to the best of our knowledge, the SamplingCA-ASF algorithm pro-
posed in this work is the first algorithm that can generate PCAs for
Automotive02 and Linux within reasonable time, indicating that
SamplingCA-ASF can effectively alleviate the scalability problem.

6 CONCLUSION
This work presents a practical PCAG algorithm called SamplingCA-
ASF , a variant of our recently-proposed, state-of-the-art PCAG
algorithm named SamplingCA with several modifications. We per-
form experiments to evaluate SamplingCA-ASF on two challeng-
ing PCAG instances, i.e., Automotive02 and linux. To the best
of our knowledge, there is no existing PCAG algorithm that can
effectively generate PCAs for Automotive02 and linux within rea-
sonable time. Encouragingly, our experiments demonstrate that
SamplingCA-ASF can generate PCAs for Automotive02 and linux
within reasonable time, indicating that SamplingCA-ASF is able to
effectively alleviate the well-known scalability problem.

DATA AVAILABILITY STATEMENT
The implementation of SamplingCA-ASF , both Boolean formulae
of the two challenging Automotive02 and Linux instances, and
SamplingCA-ASF ’s both generated PCAs for the Automotive02
and Linux instances are publicly available at our public repository:
https://github.com/chuanluocs/SamplingCA-ASF.
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