
Managing Systems Evolving in Space and Time: Four Challenges
for Maintenance, Evolution and Composition of Variants

Gabriela Karoline Michelon1,2, David Obermann1, Wesley K. G. Assunção3,
Lukas Linsbauer4, Paul Grünbacher1, Alexander Egyed1

1Institute for Software Systems Engineering, Johannes Kepler University Linz, Austria
2LIT Secure and Correct Systems Lab, Johannes Kepler University Linz, Austria

3Pontifical Catholic University of Rio de Janeiro, Brazil & PPGComp - Western Paraná State University, Brazil
4Institute of Software Engineering and Automotive Informatics, Technische Universität Braunschweig, Germany

ABSTRACT
Software companies need to provide a large set of features satisfying
functional and non-functional requirements of diverse customers,
thereby leading to variability in space. Feature location techniques
have been proposed to support software maintenance and evolution
in space. However, so far only one feature location technique also
analyses the evolution in time of system variants, which is required
for feature enhancements and bug fixing. Specifically, existing tools
for managing a set of systems over time do not offer proper support
for keeping track of feature revisions, updating existing variants,
and creating new product configurations based on feature revisions.
This paper presents four challenges concerning such capabilities
for feature (revision) location and composition of new product
configurations based on feature/s (revisions). We also provide a
benchmark containing a ground truth and support for computing
metrics. We hope that this will motivate researchers to provide and
evaluate tool-supported approaches aiming at managing systems
evolving in space and time. Further, we do not limit the evaluation
of techniques to only this benchmark: we introduce and provide
instructions on how to use a benchmark extractor for generating
ground truth data for other systems. We expect that the feature
(revision) location techniques maximize information retrieval in
terms of precision, recall, and F-score, while keeping execution
time and memory consumption low.

CCS CONCEPTS
• Software and its engineering → Software product lines;
Traceability; Software reverse engineering; Reusability.

KEYWORDS
feature location, feature revision, software product line, repository
mining, benchmark extractor
ACM Reference Format:
Gabriela Karoline Michelon1,2, David Obermann1, Wesley K. G. Assunção3,
Lukas Linsbauer4, Paul Grünbacher1, Alexander Egyed1. 2021. Managing

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SPLC’21, 06–11 September, 2021, Leicester, UK
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/10.1145/1122445.1122456

Systems Evolving in Space and Time: Four Challenges for Maintenance,
Evolution and Composition of Variants. In 25th ACM International Systems
and Software Product Line Conference (SPLC ’21), September 06–11, 2021,
Leicester, United Kingdom. ACM, New York, NY, USA, 6 pages. https://doi.
org/10.1145/1122445.1122456

1 INTRODUCTION
Software companies have to tailor andmaintain variants of software
systems co-existing simultaneously to serve different customers
and new requirements. Variants of a system are composed of vari-
able assets related to different features that realize the variability
of a system [3]. The system variants reflect different configurations
and have been described as variability in space [28, 29]. Variability
in time, on the other hand, results from the need of modifying vari-
ants due to enhancements, for example, to address new customer
requirements or changes to the environment, such as alternative
hardware or the optimization of non-functional properties [29].
Thus, over the system life cycle, the introduction of new features in
existing variants, a.k.a evolution in space can be required. Further,
features can be subject to failures or unwanted behaviors and bug
fixes have to be done, introducing new revisions of features, which
is referred to as evolution in time [28]. Furthermore, the evolution
in time results in variant revisions, which are sequential versions of
a variant, containing different artifacts for the same configuration,
i.e., a set of features [4, 16].

The aforementioned scenarios lead to many system variants
that need to be managed and evolved in parallel. This highly in-
creases the workload of developers. Furthermore, keeping system
variability consistent across different types of artifacts manually is
an error-prone task [16]. Software product line (SPL) approaches
have been adopted by engineers for systematic variability manage-
ment and reuse of the core assets and features’ artifacts, thereby
accelerating the production of variants and reducing the effort and
costs for maintaining and creating products [12]. Regarding the
transition of existing systems to an SPL, feature location is the first
and one of the most essential tasks of the re-engineering process
to migrate a family of existing system variants into an SPL [2].

Despite feature location and SPLs cover the space dimension,
they do not address the time dimension [4]. SPLs by themselves do
not provide proper management of evolution in time and engineers
have to adopt additional mechanisms and tools. SPLs are frequently
managed in version control systems (VCSs), which track changes
of a system over time [5]. However, current VCSs have support for
managing the versions of variants but not for managing versions
of features. Some pieces of work point out the need for an SPL to

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

SPLC’21, 06–11 September, 2021, Leicester, UK Michelon et al.

have a portfolio to reflect potential versions of a feature, i.e., the
feature revisions that co-exist, which can be reused for creating
different variants [4, 16, 24].

Existing feature location techniques can locate features of a sys-
tem [6, 21, 25] or a set of systems [1, 22], but only at one point in
time. Although there are some feature location techniques consid-
ering the space dimension, they have limitations as presented in our
previous work [21]. Still, regarding the time dimension, there is only
one feature revision location technique able to retrieve traces of
feature revisions [24], which is in the early stages of development,
with sub-optimal results, and limitations in terms of the number of
feature revisions that can be located.

We thus stress the need of introducing new, or improving ex-
isting, feature (revision) location techniques by describing four
challenges to be solved by the research community and tool de-
velopers. These challenges are concerned with locating features at
one point in time as well as at multiple points in time (Section 2).
Yet, the proposed feature (revision) location techniques support
engineers in creating new configurations based on the traced fea-
tures and their revisions. By proposing these challenges, we aim to
motivate researchers and tool developers to optimize and address
the limitations of existing techniques and to develop more efficient
mechanisms for managing systems evolving in space and time.

Evaluating solutions for the challenges with a common bench-
mark can enable future work comparisons [21]. For this purpose,
we contribute with both a benchmark and a ground truth extractor1
for evaluating these techniques. Thus, the benchmark contains: (i)
a ground truth dataset2 with variants from three C open-source
systems evolving in space and time with their respective configura-
tions at one point and multiple points in time; (ii) tool utilities1 to
evaluate the efficiency of feature (revision) location techniques that
compute automatically three metrics: precision, recall, and f-score.

The remainder of this paper is structured as follows. Section 2
presents the motivation and challenges of this paper. Section 3
provides detailed information on the benchmark. We discuss the
scenarios and metrics for evaluating solutions and briefly explain
the ground truth extractor. Section 4 concludes the paper.

2 THE CHALLENGES
To describe our challenges, we now present the background of fea-
ture (revision) location techniques. Then we explain the importance
of these techniques, their current limitation, and observed complex-
ity, or lack of studies, which makes the challenges interesting.

2.1 Feature Location
A feature can be a functional or non-functional requirement that
represents a software system’s functionality [6]. Let’s use theMarlin
system, open-source firmware for 3D printers, as an example. It has
features for linear acceleration, control of the temperature to melt
the filament or buzzer sounds for warning signals [13]. Some of
the features are optional, i.e., not all products of a system have to
include them. These optional features are thus units of variability
responsible for changing the system’s functionality and behavior.

1https://github.com/GabrielaMichelon/git-ecco/tree/challenge
2http://doi.org/10.5281/zenodo.4586774

Marlin is an annotated SPL, however, according to a study from
Krüger et al. [13], not all optional features are used in variation
points, e.g., #ifdef preprocessor directives. During maintenance
and evolution, developers need the complete locations of features,
which can be outside the annotations. This requires manual work
that could be automated by feature location techniques. Further-
more, feature location techniques are helpful not only for the
software maintenance and evolution tasks as well as for the re-
engineering process of cloned software systems into SPLs [2, 26].

There already exists a large number of feature location tech-
niques, which use, e.g, textual, static, or dynamic analyses, or com-
binations thereof [6, 21]. Despite many feature location techniques
available, results can be compromised by the number of existing
software systems when using a comparison-based static analysis for
re-engineering existing software systems into SPLs [22], for exam-
ple. Yet, the quality results of textual analysis are highly-dependent
on index terms and queries, while the results from the dynamic
analysis are very sensitive to how scenarios and features are exe-
cuted [21]. Nonetheless, feature location techniques have different
evaluations, metrics, and ground truth data sets, making it diffi-
cult for practitioners to decide which one is most appropriate for
them [26]. Further, some of the work proposing feature location
techniques cannot be reproduced because of not available mate-
rial, which makes it difficult to compare existing feature location
techniques with improvements addressing their limitations [21, 26].

Therefore, more common benchmarking frameworks for evaluat-
ing feature location techniques have been suggested [18]. Currently,
there is a benchmark proposed by Martinez et al. [18] based on the
ArgoUML system, which is implemented in Java. However, differ-
ences in source code entities between different languages have a
strong impact on feature location [27]. Yet, there are few bench-
marks available that can be used to apply feature (revision) location
to C-preprocessor-based systems. A benchmark for C software sys-
tems would ease the proposal and evaluation of feature (revision)
location techniques because C is widely used for realizing SPLs
with preprocessor directives [19]. We thus now present our first
challenge:

Challenge 1: Feature location at one point in time. We aim
to motivate researchers and tool developers to evaluate existing
or new feature location techniques based on systems developed
in C or C++, using a common benchmark enabling the studies’
reproducibility and comparison.

We also want to motivate the development of approaches for au-
tomation of the reuse of features for composing new configurations.
We thus present our second challenge:

Challenge 2: Composition of new product configurations
with a set of features. We evaluate if the proposed feature loca-
tion approaches for C/C++ systems can be used to compose new
configurations with the traces retrieved to simplify and accelerate
the composition of not yet existing variants of a system.

2.2 Feature Revision Location
A feature revision represents the change of the implementation
artifacts associated with a feature at a specific point in time [11, 23].

https://github.com/GabrielaMichelon/git-ecco/tree/challenge
http://doi.org/10.5281/zenodo.4586774

Managing Systems Evolving in Space and Time: Four Challenges for Maintenance, Evolution and Composition of Variants SPLC’21, 06–11 September, 2021, Leicester, UK

Previous studies [4, 11, 23, 24] stress the need to manage system
variants over time at the level of feature revisions. Even if a software
system already manages its features as an SPL, maintenance and
evolution will introduce changes, affecting the implementation of
the system’s features, which may become inconsistent across the ex-
isting variants. This makes changes increasingly hard to understand
and propagate to variants at any time a feature has to be revised [8].
In the literature and practice, there is no unified mechanism to
deal with the evolution of systems in space and time [4]. While
we presented a feature revision location technique for software
systems evolving in space and time in our previous work [24], there
are some limitations that need yet to be addressed. For instance, a
higher number of feature revisions could be traced with less mem-
ory consumption and higher effectiveness in retrieving information.
We thus present the third challenge to motivate researchers and
tool developers to improve our feature revision location technique
or propose new ones overcoming current limitations.

Challenge 3: Feature revision location at multiple points
in time. We expect solutions with feature revision location tech-
niques to automate the process of mapping implementation arti-
facts to feature revisions for every existing different implementa-
tion of a feature at multiple points in time.

Aiming to motivate better and unified mechanisms and tools for
system evolution in space and time, we present our fourth chal-
lenge. It is intended to use the feature revision location technique
solution from the third challenge as an extractive approach [2] for
re-engineering existing variants’ versions by systematically reusing
feature revisions. By raising initial solutions for systematic reuse in
software systems evolving in space and time to the level of features,
developers and engineers can benefit not only when propagating
bug fixes and refactoring but also when creating new configurations
with different behaviors of the same feature.

Challenge 4: Composition of new product configurations
with a set of feature revisions. We expect solutions that can
automate the reuse of existing feature revisions of a system in
order to compose different configurations with the different im-
plementations of features at different points in time.

3 BENCHMARK
Our benchmark can be used for evaluating and comparing feature
(revision) location techniques for the C programming language
with an established set of metrics1 and dataset2 from available
open-source systems.

3.1 Subject Systems
Our benchmark is composed of preprocessed SPLs implemented in
combination with version control systems, which keep a history
of the changes over time and enable us to generate ground truth
variants with features from multiple points in time. The systems
are LibSSH, Irssi, and Marlin. These systems have been used in
previous studies [9, 10, 14, 15, 20, 23, 24], and are managed in Git
repositories. We thus believe they are representative target systems
to be used to evaluate feature (revision) location techniques. The

LibSSH3 system is a multi-platform C library implementing the
SSHv2 protocol on the client- and server-side. This project was
initiated in 2005 and now has around 5000 commits in the master
branch. TheMarlin4 system is a variant-rich open-source embedded
firmware for 3D printers created in 2011 and with currently around
15000 commits. The Irssi5 system is an internet relay chat client for
Linux with around 6000 commits since 1999.

3.2 Evaluation Scenarios
3.2.1 Variants with Features. The scenarios for evaluating solutions
for Challenge 1 are from variants containing a set of features from
one release, i.e., the state of the system after the last commit of a
release in the repository. We designed 13 scenarios (Table 1) of each
system with a specific number of variants, where scenarios 1-10
have 1-10 input configurations and scenario 11 has 100, scenario
12 has 200, and scenario 13 has 300 input configurations.

For Challenge 2, we make available 50 new configurations that
do not exist in any one of the scenarios to evaluate the solutions.

Table 1: Scenarios to feature revision location.

Number of Features
Scenario Number of Variants LibSSH Marlin Irssi
1 1 65 41 26
2 2 91 56 32
3 3 99 61 37
4 4 102 65 40
5 5 104 65 40
6 6 104 67 40
7 7 104 67 41
8 8 104 67 41
9 9 104 67 41
10 10 104 67 41
11 100 104 67 41
12 200 104 67 41
13 300 104 67 41

3.2.2 Variants with Feature Revisions. The scenarios for evaluating
solutions for Challenge 3 are from variants containing a set of
feature revisions from 400 points in time, i.e., from the first 400 Git
commits of the master branch. We designed nine scenarios (Table 2)
for each system according to a specific number of Git commits, by
varying the number of variants for each system. For both all systems,
we present scenarios that consist of locating feature revisions from
1 point in time to up 400 points in time. Furthermore, we make
available an additional scenario for the LibSSH system with a set of
6730 variants, resulting in 6596 feature revisions from 103 features,
thereby covering the entire evolution of the master branch.

For Challenge 4, we make available one new configuration for
each point in time where solution proponents can combine different
feature revisions for all the scenarios presented in this work.

3https://gitlab.com/libssh/libssh-mirror
4https://github.com/MarlinFirmware/Marlin
5https://github.com/irssi/irssi

https://gitlab.com/libssh/libssh-mirror
https://github.com/MarlinFirmware/Marlin
https://github.com/irssi/irssi

SPLC’21, 06–11 September, 2021, Leicester, UK Michelon et al.

Table 2: Scenarios for feature revision location.

LibSSH Marlin Irssi
S C V F R V F R V F R
1 1 14 14 0 1 1 0 7 7 0
2 5 22 14 8 19 13 6 11 7 4
3 10 32 14 18 24 13 11 16 7 9
4 15 40 15 25 37 16 20 21 7 14
5 50 111 34 77 81 16 64 65 15 50
6 100 182 34 148 333 130 179 84 16 101
7 200 322 39 283 463 135 303 170 28 209
8 300 458 40 418 579 139 413 341 28 314
9 400 575 40 536 683 142 514 441 28 414

S = Scenario; C = Number of Git commits; V = Number of
variants; F = Number of features; R = Number of feature re-
visions.

3.3 Format of the Proposed Solutions
The ground truth is composed of a set of variants and no traces,
which allows for multiple valid traces. Then, the solutions for all
challenges have to show as result the variants composed with the
mappings of each feature (revision) to its artifacts that are part
of a configuration, i.e., the artifacts that form the input and new
product configurations of the ground truth. Additionally, we expect
the result files from the metrics computed (see Section 3.4).

3.4 Metrics
In this section, we present the metrics suggested to evaluate the fea-
ture (revision) location technique regarding its quality (correctness)
and performance (scalability). The correctness must be computed
based on the comparison between the ground truth variants with
corresponding retrieved ones obtained after performing the feature
(revision) location.

3.4.1 Correctness. To evaluate the effectiveness of the feature re-
vision location technique, i.e., the quality of its search results, we
adopt efficient and frequently used information retrieval metrics
precision (P) and recall (R) [17, 26] (cf. Equations 1 and 2). Fur-
thermore, we also adopt the F-score (F), i.e., the harmonic average
between precision and recall, as a single value equally balancing
precision and recall (cf. Equation 3) and assessing the techniques’
effectiveness [7].

We used two levels of granularity due to the granularity of the
ground truth extraction. The variants can be obtained from lines
that have been added/removed/changed in C source code, binary, or
text files from Git commits. Therefore, the metrics can be computed
at the granularity of file-level and line-level: The file-level compari-
son checks if two complete files (ground truth and retrieved) match
their content; while the line-level analysis compares every line of
source code of two files (ground truth and retrieved).

Precision (Equation 1) is the relation of the true positives (TP),
i.e., the correctly retrieved files, which entire content matches, and
false positives (FP), i.e., the files that their entire content does not
match. At the line-level, TP are the lines of source code that match

related to the lines of source code retrieved by the technique that
does not exist in the ground truth variants.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(1)

Recall (Equation 2) is the relation of the false negatives (FN),
i.e., the files or lines of source code that exist in the ground truth
variant but were not retrieved by the technique.

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(2)

The F-score (Equation 3) is the harmonic average of precision
and recall.

F-Score = 2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

(3)
Instructions on how to use our tool utils for computing automat-

ically these metrics are available in our Git repository1.

3.4.2 Scalability. To evaluate the scalability of the feature (revi-
sion) location technique, we expect proponents to compute runtime
and memory consumption, reporting the specification of the infras-
tructure used to run the proposed solutions. These metrics can help
to compare and improve techniques regarding the time complexity
and space complexity, i.e., how much time a technique takes to
locate features (revisions) for each variant and how much memory
is necessary to locate features and their revisions for a specific
number of variants.

3.5 Ground Truth Extractor
The ground truth extractor and instructions on how to use it are
available in our Git repository1. We now explain how our extractor
mines features and feature revisions to generate a ground truth. Our
explanation relies on a small running example shown in Listing 1,
where we use the first Git commit of the Marlin system.

We first need the set of features of a system defined to be able
to preprocess variants. Then, we make available the possibility
of setting up manually the set of existing features of a system in
our extractor or computing features automatically based on our
approach to identifying features.

Identifying features. From a specific range of Git commits, we ana-
lyze all macros used in preprocessor directives. The macros used
in the #ifdefs directives are candidates to be part of the features of
the system. We also analyze the macros used in #define directives,
which we discard from being features of the system. Therefore, the
macros considered features are the ones that have never been used
in #define directives in the range of Git commits analyzed.

In the case of our running example (Listing 1), the possible
feature candidates are the macros CONFIGURATION_H, ADVANCE,
MOTHERBOARD, and __AVR_ATmega644P__. In the next analy-
sis, we look for define directives and eliminate the macros
CONFIGURATION_H and MOTHERBOARD. Thus, the set of features we
consider is composed of features ADVANCE, __AVR_ATmega644P__
and BASE. The feature called BASE is the feature containing the core
of the system. The BASE can be represented by the files that are
not source code files, and all code of conditional blocks, i.e., #ifdefs
with macros that are not part of the set of features, for example,
the conditional block from Lines 1-9 in Listing 1. Now we have the

Managing Systems Evolving in Space and Time: Four Challenges for Maintenance, Evolution and Composition of Variants SPLC’21, 06–11 September, 2021, Leicester, UK

1 #ifndef CONFIGURATION_H
2 #define CONFIGURATION_H
3 #define MOTHERBOARD 5
4 #ifdef ADVANCE
5 #define EXTRUDER_ADVANCE_K 0.02
6 #endif
7 #endif
8
9 #if MOTHERBOARD == 1
10 #ifndef __AVR_ATmega644P__
11 #error
12 #endif
13 #endif

Listing 1: Code snippet adapted from file Configurations.h
from the first Git commit 750f6c3 of the Marlin system.

set of features to preprocess the variants or to start the process of
mining feature revisions.

Mining feature revisions. Mining feature revisions consists of find-
ing features, which were affected by changes to their implementa-
tion in some Git commits, with lines added, changed, or removed at
specific points in time. For this analysis, we consider all conditional
blocks, all #define directives, and also the blocks and directives from
the top of the file including recursively all the ones in header files,
i.e., files used in the #include directives. We create then a set of con-
straints to represent the conditions that must be satisfied to execute
a specific line of source code (see [23, 24]). For example, Line 3 in
Listing 1 will be executed if the macro CONFIGURATION_H is not de-
fined. In this example, we then know that CONFIGURATION_H is not
a feature and the conditional block of the macro CONFIGURATION_H
belongs to the BASE.

However, in more complex cases, let us suppose the macro
MOTHERBOARD is not defined on Line 3 in Listing 1 and there is
another file containing a conditional block with a feature that is
defining a value 1 for the macro MOTHERBOARD. Thus, the condi-
tional block from Line 9-13 would belong to that specific feature
defining MOTHERBOARD, instead of belonging to the BASE feature.
Yet, another example is the macro MOTHERBOARD defined in two
locations: on Line 3 in Listing 1 and in another file as we mentioned.
We thus consider the conditional block of the macro MOTHERBOARD
as part of the closest feature, which in this example is BASE. We
use the closest feature because the MOTHERBOARD value would have
already been replaced by the value on Line 3, which is part of the
feature BASE before preprocessing the block of Lines 9-13 in List-
ing 1. Finally, when preprocessing the source code, the lines of the
conditional block of the macro MOTHERBOARD would be executed
from the code of the feature BASE.

A feature revision then is a feature that is introduced or changed
when comparing one point in time to another. We thus get a range
of Git commits and compare the first commit with the second,
the second commit with the third, and so on. The comparison
consists of analyzing for each line of source code added, removed,
or changed between two Git commits, which features are part of it.
The feature(s) is/are then selected to preprocess a variant, which
contains the artifacts of at least the feature BASE and possible other
feature(s). Thus, from the features used to preprocess a variant, only
the closest feature will have an increment in its revision, i.e., in the
number that proceeds the name of the feature, which represents
kind of a new version of a feature revision.

Taking into account that all the lines from Listing 1 were added,
we have three variants representing the changes of this point in
time. One is a variant containing the feature revision BASE.1 with
the number 1 as it is the first revision of the feature BASE. The
preprocessed result comprises Lines 2, 3, and 5 from Listing 1. A sec-
ond variant contains the feature revisions BASE.1 and ADVANCE.1.
The result from preprocessing comprises Lines 2 and 3 from List-
ing 1. The third variant containing the feature revisions BASE.1
and __AVR_ATmega644P__ has then Lines 2, 3 and 11 from Listing 1.
This same process repeats for every change over all artifact files of
a system for every Git commits of a selected range. More details of
the approach we used to create variants with feature revisions are
shown in our previous work [23, 24].

We used the ChocoSolver6 to implement our benchmark extrac-
tor and to automate the analysis of building correctly the set of
constraints and getting correct solutions, i.e, the features to be
selected or excluded to execute a specific line of source code. We
chose this solver because it enables us to get basic arithmetic oper-
ations and comparisons of numeric values in the range of integer
or double despite basic logic operations and Boolean values, which
would not be possible with an SAT solver, for example.

4 CONCLUSION
We presented four challenges relevant for feature (revision) loca-
tion techniques to motivate the proposal of solutions for better
mechanisms and tools to support the evolution of systems in space
and time. We made available a benchmark for comparing future
work for supporting reproducibility. It contains a dataset and tool
utilities for computing metrics. The dataset comprises a set of vari-
ants and their configurations to be used as input for the techniques
and a set of variants and their configurations to be used as new
configurations. This allows to evaluate if the resulting traces can
be used to compose variants with a new set of features and feature
revisions.

The ground truth of features at one point in time was generated
by preprocessing SPLs with our benchmark extractor, as well as
the ground truth of feature revisions from multiple points in time.
The ground truth extractor for generating variants with feature
revisions was also used in our previous studies [23, 24], which
mines previously the feature revisions of a range of Git commits
from the SPLs in Git version control systems. Thus, although the
benchmark comprises three systems, our ground truth extractor
can be used to generate ground truth data sets and variants for any
point in time.

ACKNOWLEDGMENTS
This research was funded by the LIT Secure and Correct Sys-
tems Lab; the Austrian Science Fund (FWF), grant no. P31989;
Pro2Future, a COMET K1-Centre of the Austrian Research Promo-
tion Agency (FFG), grant no. 854184; CNPq, grant no. 408356/2018-9;
FAPPR, grant no. 51435; and FAPERJ PDR-10 program, grant no.
202073/2020. The support by the Austrian Federal Ministry for Digi-
tal and Economic Affairs and the National Foundation for Research,
Technology and Development is gratefully acknowledged.

6https://choco-solver.org/

https://github.com/MarlinFirmware/Marlin/commit/750f6c33e30ca16fab1ebe552a6b3422282bc66a
https://choco-solver.org/

SPLC’21, 06–11 September, 2021, Leicester, UK Michelon et al.

REFERENCES
[1] Ra’Fat AL-Msie’deen, Abdelhak Seriai, Marianne Huchard, Christelle Urtado,

Sylvain Vauttier, and Hamzeh Eyal Salman. 2013. Feature Location in a Collec-
tion of Software Product Variants Using Formal Concept Analysis. In Safe and
Secure Software Reuse, John Favaro and Maurizio Morisio (Eds.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 302–307.

[2] Wesley K. G. Assunção, Roberto E. Lopez-Herrejon, Lukas Linsbauer, Silvia R.
Vergilio, and Alexander Egyed. 2017. Reengineering legacy applications into
software product lines: a systematic mapping. Empir. Softw. Eng. 22, 6 (2017),
2972–3016. https://doi.org/10.1007/s10664-017-9499-z

[3] Wesley K.G. Assunção, Silvia R. Vergilio, and Roberto E. Lopez-Herrejon. 2020.
Automatic extraction of product line architecture and feature models from UML
class diagram variants. Information and Software Technology 117 (2020), 106198.
https://doi.org/10.1016/j.infsof.2019.106198

[4] Thorsten Berger, Marsha Chechik, Timo Kehrer, and Manuel Wimmer. 2019.
Software Evolution in Time and Space: Unifying Version and Variability Man-
agement (Dagstuhl Seminar 19191). Dagstuhl Reports 9, 5 (2019), 1–30. https:
//doi.org/10.4230/DagRep.9.5.1

[5] Ben Collins-Sussman, Brian W. Fitzpatrick, and C. Michael Pilato. 2002. Version
Control with Subversion. O’Reilly Media, Stanford, California, USA. http://
svnbook.red-bean.com/

[6] Bogdan Dit, Meghan Revelle, Malcom Gethers, and Denys Poshyvanyk. 2013.
Feature location in source code: a taxonomy and survey. Journal of Software:
Evolution and Process 25, 1 (2013), 53–95. https://doi.org/10.1002/smr.567

[7] Marc Eaddy, Alfred V. Aho, Giuliano Antoniol, and Yann-Gaël Guéhéneuc. 2008.
CERBERUS: Tracing Requirements to Source Code Using Information Retrieval,
Dynamic Analysis, and Program Analysis. In The 16th IEEE International Confer-
ence on Program Comprehension, ICPC 2008, Amsterdam, The Netherlands, June
10-13, 2008, René L. Krikhaar, Ralf Lämmel, and Chris Verhoef (Eds.). IEEE Com-
puter Society, New York, USA, 53–62. https://doi.org/10.1109/ICPC.2008.39

[8] T. Eisenbarth, R. Koschke, and D. Simon. 2003. Locating features in source
code. IEEE Transactions on Software Engineering 29, 3 (2003), 210–224. https:
//doi.org/10.1109/TSE.2003.1183929

[9] Angelo Gargantini, Justyna Petke, Marco Radavelli, and Paolo Vavassori. 2016.
Validation of Constraints Among Configuration Parameters Using Search-Based
Combinatorial Interaction Testing. In Search Based Software Engineering, Federica
Sarro and Kalyanmoy Deb (Eds.). Springer International Publishing, New York,
NY, USA, 49–63.

[10] Huong Ha and Hongyu Zhang. 2019. Performance-Influence Model for Highly
Configurable Software with Fourier Learning and Lasso Regression. In 35th
International Conference on Software Maintenance and Evolution (Cleveland, OH,
USA) (ICSME 2019). IEEE, New York, USA, 470–480. https://doi.org/10.1109/
ICSME.2019.00080

[11] Daniel Hinterreiter, Michael Nieke, Lukas Linsbauer, Christoph Seidl, Herbert
Prähofer, and Paul Grünbacher. 2019. Harmonized Temporal Feature Modeling
to Uniformly Perform, Track, Analyze, and Replay Software Product Line Evo-
lution. In 18th International Conference on Generative Programming: Concepts
& Experiences (Athens, Greece) (GPCE 2019). ACM, New York, USA, 115–128.
https://doi.org/10.1145/3357765.3359515

[12] Charles W. Krueger. 1992. Software Reuse. ACM Comput. Surv. 24, 2 (June 1992),
131–183. https://doi.org/10.1145/130844.130856

[13] Jacob Krüger, Wanzi Gu, Hui Shen, Mukelabai Mukelabai, Regina Hebig, and
Thorsten Berger. 2018. Towards a Better Understanding of Software Features
and Their Characteristics: A Case Study of Marlin. In Proceedings of the 12th
International Workshop on Variability Modelling of Software-Intensive Systems
(Madrid, Spain) (VAMOS 2018). Association for Computing Machinery, New York,
NY, USA, 105–112. https://doi.org/10.1145/3168365.3168371

[14] Jacob Krüger, Mukelabai Mukelabai, Wanzi Gu, Hui Shen, Regina Hebig, and
Thorsten Berger. 2019. Where is my feature and what is it about? A case study
on recovering feature facets. Journal of Systems and Software 152 (2019), 239–253.
https://doi.org/10.1016/j.jss.2019.01.057

[15] Jörg Liebig, Sven Apel, Christian Lengauer, Christian Kästner, and Michael
Schulze. 2010. An Analysis of the Variability in Forty Preprocessor-based Soft-
ware Product Lines. In 32nd ACM/IEEE International Conference on Software
Engineering - Volume 1 (Cape Town, South Africa) (ICSE 2010). ACM, New York,
USA, 105–114. https://doi.org/10.1145/1806799.1806819

[16] Lukas Linsbauer, Felix Schwägerl, Thorsten Berger, and Paul Grünbacher. 2021.
Concepts of variation control systems. J. Syst. Softw. 171 (2021), 110796. https:
//doi.org/10.1016/j.jss.2020.110796

[17] Christopher D Manning, Hinrich Schütze, and Prabhakar Raghavan. 2008. Intro-
duction to information retrieval. Cambridge university press, Cambridge, England.

[18] Jabier Martinez, Nicolas Ordoñez, Xhevahire Tërnava, Tewfik Ziadi, Jairo Aponte,
Eduardo Figueiredo, and Marco Tulio Valente. 2018. Feature location benchmark
with argoUML SPL. In Proceeedings of the 22nd International Systems and Software
Product Line Conference - Volume 1, SPLC 2018, Gothenburg, Sweden, September
10-14, 2018, Thorsten Berger, Paulo Borba, Goetz Botterweck, Tomi Männistö,
David Benavides, Sarah Nadi, Timo Kehrer, Rick Rabiser, Christoph Elsner, and

Mukelabai Mukelabai (Eds.). ACM, New York, USA, 257–263. https://doi.org/10.
1145/3233027.3236402

[19] Flávio Medeiros, Christian Kästner, Márcio Ribeiro, Sarah Nadi, and Rohit Gheyi.
2015. The Love/Hate Relationship with the C Preprocessor: An Interview Study
(Artifact). Dagstuhl Artifacts Ser. 1, 1 (2015), 07:1–07:32. https://doi.org/10.4230/
DARTS.1.1.7

[20] F. Medeiros, M. Ribeiro, R. Gheyi, S. Apel, C. Kästner, B. Ferreira, L. Carvalho,
and B. Fonseca. 2018. Discipline Matters: Refactoring of Preprocessor Directives
in the #ifdef Hell. IEEE Transactions on Software Engineering 44, 5 (May 2018),
453–469. https://doi.org/10.1109/TSE.2017.2688333

[21] Gabriela Karoline Michelon, Lukas Linsbauer, Wesley K. G. Assunção, Stefan
Fischer, and Alexander Egyed. 2021. A Hybrid Feature Location Technique for
Re-engineeringSingle Systems into Software Product Lines. In VaMoS’21: 15th
International Working Conference on Variability Modelling of Software-Intensive
Systems, Virtual Event / Krems, Austria, February 9-11, 2021, Paul Grünbacher,
Christoph Seidl, Deepak Dhungana, and Helena Lovasz-Bukvova (Eds.). ACM,
New York, USA, 11:1–11:9. https://doi.org/10.1145/3442391.3442403

[22] Gabriela Karoline Michelon, Lukas Linsbauer, Wesley K. G. Assunção, and Alexan-
der Egyed. 2019. Comparison-Based Feature Location in ArgoUML Variants. In
23rd International Systems and Software Product Line Conference - Volume A (Paris,
France) (SPLC ’19). Association for Computing Machinery, New York, NY, USA,
93–97. https://doi.org/10.1145/3336294.3342360

[23] Gabriela Karoline Michelon, David Obermann, Wesley Klewerton Guez Assunção,
Lukas Linsbauer, Paul Grünbacher, and Alexander Egyed. 2020. Mining Feature
Revisions in Highly-Configurable Software Systems. In Proceedings of the 24th
ACM International Systems and Software Product Line Conference - Volume B
(Montreal, QC, Canada) (SPLC ’20). Association for Computing Machinery, New
York, NY, USA, 74–78. https://doi.org/10.1145/3382026.3425776

[24] Gabriela Karoline Michelon, David Obermann, Lukas Linsbauer, Wesley Klew-
erton Guez Assunção, Paul Grünbacher, and Alexander Egyed. 2020. Locating
feature revisions in software systems evolving in space and time. In SPLC ’20:
24th ACM International Systems and Software Product Line Conference, Montreal,
Quebec, Canada, October 19-23, 2020, Volume A, Roberto Erick Lopez-Herrejon
(Ed.). ACM, New York, USA, 14:1–14:11. https://doi.org/10.1145/3382025.3414954

[25] Denys Poshyvanyk, Yann-Gael Gueheneuc, Andrian Marcus, Giuliano Antoniol,
and Vaclav Rajlich. 2007. Feature Location Using Probabilistic Ranking ofMethods
Based on Execution Scenarios and Information Retrieval. IEEE Transactions on
Software Engineering 33, 6 (June 2007), 420–432. https://doi.org/10.1109/TSE.
2007.1016

[26] Abdul Razzaq, Asanka Wasala, Chris Exton, and Jim Buckley. 2018. The State of
Empirical Evaluation in Static Feature Location. ACM Trans. Softw. Eng. Methodol.
28, 1, Article 2 (Dec. 2018), 58 pages. https://doi.org/10.1145/3280988

[27] Ripon K. Saha, Julia Lawall, Sarfraz Khurshid, and Dewayne E. Perry. 2014. On the
Effectiveness of Information Retrieval Based Bug Localization for C Programs.
In 30th IEEE International Conference on Software Maintenance and Evolution,
Victoria, BC, Canada, September 29 - October 3, 2014. IEEE Computer Society, New
York, USA, 161–170. https://doi.org/10.1109/ICSME.2014.38

[28] Christoph Seidl, Ina Schaefer, and Uwe Aßmann. 2014. Capturing Variability
in Space and Time with Hyper Feature Models. In Proceedings of the Eighth
International Workshop on Variability Modelling of Software-Intensive Systems
(Sophia Antipolis, France) (VaMoS ’14). Association for Computing Machinery,
New York, NY, USA, Article 6, 8 pages. https://doi.org/10.1145/2556624.2556625

[29] Thomas Thüm, Leopoldo Teixeira, Klaus Schmid, Eric Walkingshaw, Mukelabai
Mukelabai, Mahsa Varshosaz, Goetz Botterweck, Ina Schaefer, and Timo Kehrer.
2019. Towards Efficient Analysis of Variation in Time and Space. In Proceedings
of the 23rd International Systems and Software Product Line Conference - Volume B
(Paris, France) (SPLC ’19). Association for Computing Machinery, New York, NY,
USA, 57–64. https://doi.org/10.1145/3307630.3342414

https://doi.org/10.1007/s10664-017-9499-z
https://doi.org/10.1016/j.infsof.2019.106198
https://doi.org/10.4230/DagRep.9.5.1
https://doi.org/10.4230/DagRep.9.5.1
http://svnbook.red-bean.com/
http://svnbook.red-bean.com/
https://doi.org/10.1002/smr.567
https://doi.org/10.1109/ICPC.2008.39
https://doi.org/10.1109/TSE.2003.1183929
https://doi.org/10.1109/TSE.2003.1183929
https://doi.org/10.1109/ICSME.2019.00080
https://doi.org/10.1109/ICSME.2019.00080
https://doi.org/10.1145/3357765.3359515
https://doi.org/10.1145/130844.130856
https://doi.org/10.1145/3168365.3168371
https://doi.org/10.1016/j.jss.2019.01.057
https://doi.org/10.1145/1806799.1806819
https://doi.org/10.1016/j.jss.2020.110796
https://doi.org/10.1016/j.jss.2020.110796
https://doi.org/10.1145/3233027.3236402
https://doi.org/10.1145/3233027.3236402
https://doi.org/10.4230/DARTS.1.1.7
https://doi.org/10.4230/DARTS.1.1.7
https://doi.org/10.1109/TSE.2017.2688333
https://doi.org/10.1145/3442391.3442403
https://doi.org/10.1145/3336294.3342360
https://doi.org/10.1145/3382026.3425776
https://doi.org/10.1145/3382025.3414954
https://doi.org/10.1109/TSE.2007.1016
https://doi.org/10.1109/TSE.2007.1016
https://doi.org/10.1145/3280988
https://doi.org/10.1109/ICSME.2014.38
https://doi.org/10.1145/2556624.2556625
https://doi.org/10.1145/3307630.3342414

	Abstract
	1 Introduction
	2 The Challenges
	2.1 Feature Location
	2.2 Feature Revision Location

	3 Benchmark
	3.1 Subject Systems
	3.2 Evaluation Scenarios
	3.3 Format of the Proposed Solutions
	3.4 Metrics
	3.5 Ground Truth Extractor

	4 Conclusion
	Acknowledgments
	References

