

A Literature Review and Comparison of Three Feature Location Techniques using ArgoUML-SPL

Daniel Cruz¹, Eduardo Figueiredo¹, Jabier Martinez² February 08, 2019

> ¹ Universidade Federal de Minas Gerais, Brazil ² Tecnalia, Spain

> > Software Engineering Lab (LabSoft) http://labsoft.dcc.ufmg.br/

Schedule

- □ Introduction
- □ Literature Review
- □ Comparative Study
- □ Threats to Validity
- □ Conclusion
- □ Future Work

Introduction

Software Engineering Lab (LabSoft) http://labsoft.dcc.ufmg.br/

Introduction

Software Product Lines

- Allows a high level of reuse
- Usually created through an extractive process from existing systems
- Variability Mining
 - In the extractive context, is the process of locating features in an existing system
 - The goal is to produce variations of an SPL

Introduction

- Feature Location Techniques
 - Identification of code artifacts that implement a feature
 - Possibility to automate the refactoring of systems, as long as the features are located
- □ Related Work
 - Focus on most recent works, taking into account the evolution of algorithms in areas such as information retrieval and machine learning

Literature Review

Software Engineering Lab (LabSoft) http://labsoft.dcc.ufmg.br/

Goals

□ Revisit feature location strategies

□ Complement previous literature reviews

Provide a strong background for the comparative study

Research Questions

□ *RQ1*. What are the strategies used by the most recent feature location techniques?

□ *RQ2*. What are the characteristics of feature location techniques?

□ *RQ3*. How have feature location techniques been evaluated?

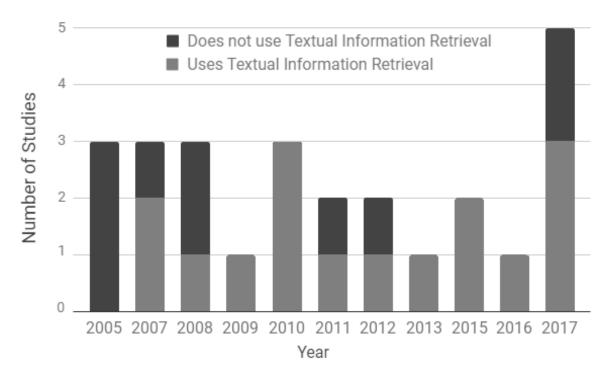
Protocol

- Collection Process
 - 142 papers collected
 - Digital Libraries: ACM, IEEE, Science Direct
- Inclusion Criteria
 - Published from 2005 to 2017
 - Studies that propose feature location techniques or improvements

Protocol

- Exclusion Criteria
 - Case studies only using existing techniques
 - Empirical studies comparing techniques
 - Surveys with comparative analysis among techniques

□ 26 papers were selected for the review


RQ1. Strategies

- We characterize the strategies used by the techniques based on the approaches of location:
 - Static
 - Dynamic
 - Textual
 - Hybrid

Approaches	Count
Static	1
Dynamic	5
Textual	9
Static/Dynamic	4
Static/Textual	1
Dynamic/Textual	5
All	1

RQ1. Strategies

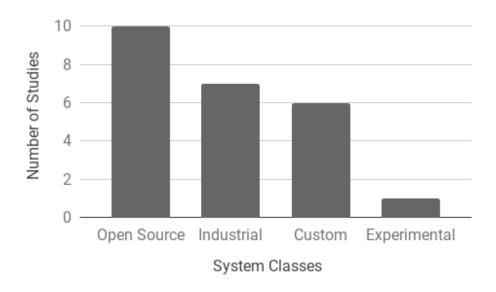
Many techniques include at least one step where textual information retrieval was used

RQ2. Characteristics

- □ Type of process: automatic (65.4%) vs semiautomatic (34.6%)
- □ Input artifacts
 - Source Code
 - Execution Traces
 - Ontology models
 - Source control history

RQ2. Characteristics

- □ Output
 - Rank of Artifacts with many granularities:
 - □ Classes
 - □ Methods
 - □ Blocks
 - Exploratory User Interface



Lack of standardization in the techniques results evaluation, including quantitative and qualitative analyses

- □ Nine different quantitative metrics:
 - Precision (7), Recall (7), Mean Reciprocal Rank
 (4), F-Measure (3), Effectiveness (3), Lattice
 Distillation Factor (1), Lattice Browsing
 Complexity (1), Uniqueness (1), Coverage (1)

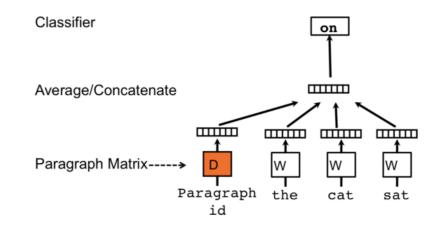
RQ3. Evaluation

- Different types of systems used for techniques evaluation:
 - Open Source, Industrial System, Custom, Experimental

Comparative Study

Software Engineering Lab (LabSoft) http://labsoft.dcc.ufmg.br/

Study Goal


□ Compare techniques to:

- Provide guidelines for future industrial cases
- Improve the feature location state of the art
- Focus on comparing textual information retrieval techniques

 Use a benchmark to provides quantitative evaluation

Feature Location Techniques

- □ Paragraph Vectors (DV)
 - Learn vectors representations for documents and words using neural networks
 - The vector has K dimensions, where K is a defined hyperparameter

Feature Location Techniques

- □ Latent Dirichlet Allocation (LDA)
 - Probabilistic model for collections of discrete data such as text corpora
 - Represents a document as a probabilistic mixture of topics, where a topic is a distribution of words
 - Each document has a probability of belonging to each latent topic, built on the corpus model
 - The number of topics is defined by a parameter K

Feature Location Techniques

□ Latent Semantic Indexing (LSI)

- Obtains an underlying latent semantic structure from data composed by words
- Applies Singular Value Decomposition (SVD) to factorize the terms in the text into K orthogonal factors, where K need to be defined
- The goal is to obtain a new representation that benefits the information retrieval

ArgoUML-SPL Benchmark

Created from an SPL of a UML editor with 8 optional features

□ Unify the largely used ArgoUML-SPL

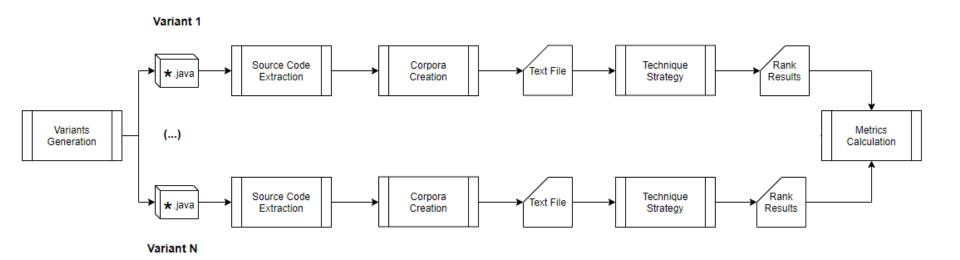
□ Ground-truth for feature location

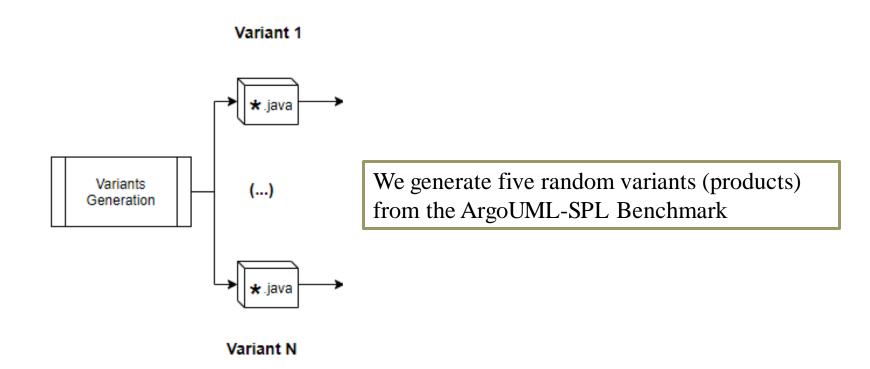
https://variability-challenges.github.io/2018/ArgoUMLSPL/

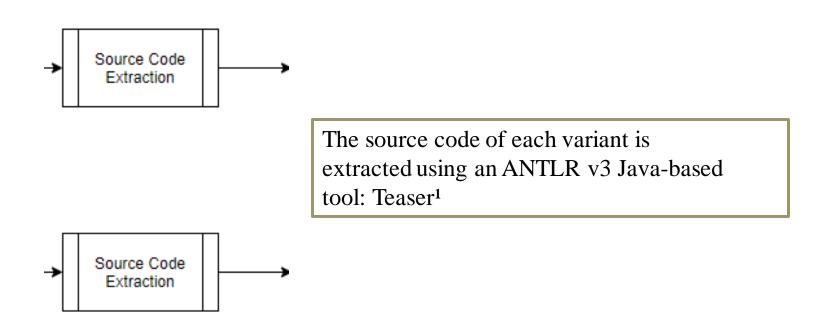
ArgoUML-SPL Benchmark

□ Generate different set of variants

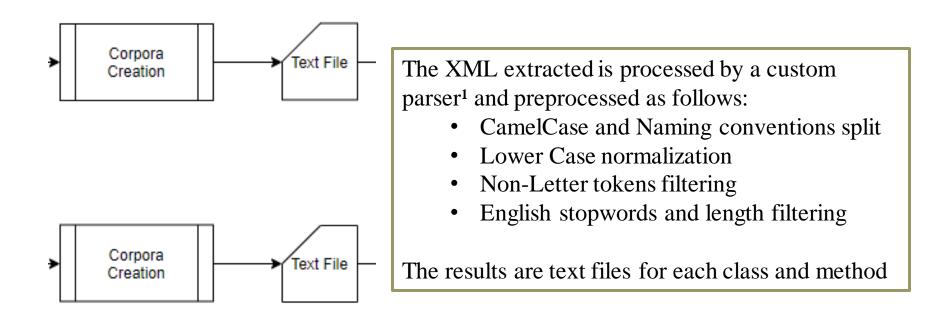
Each variant is a product of the SPL, e.g, a combination of the eight optional features

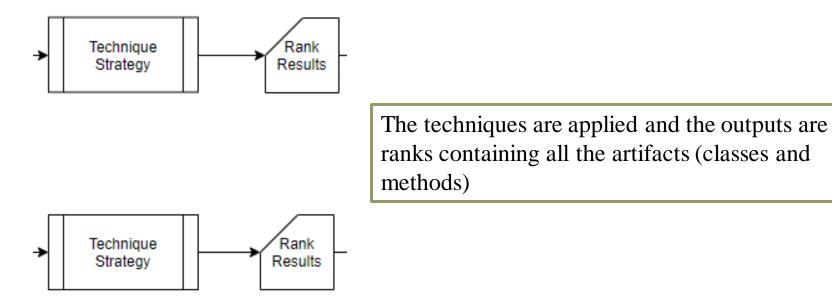

Textual Characterization

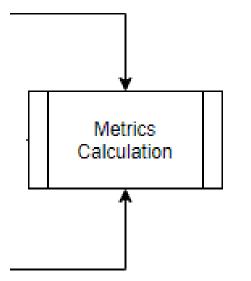

- □ The benchmark description includes metrics about size in terms of lines of code (LOC)
- For the purpose of this work, it is important to provide a characterization of the benchmark from the perspective of documents and terms


Textual Characterization

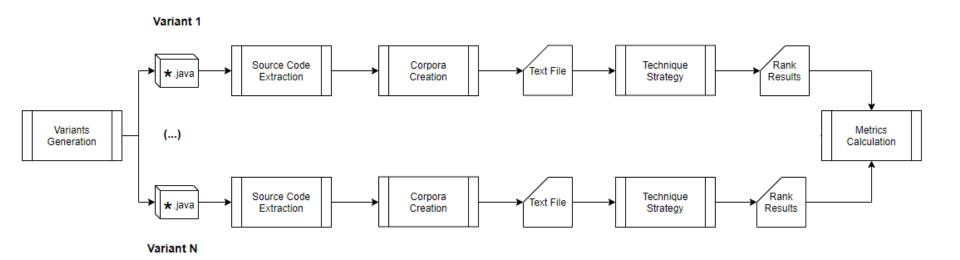
- We described the variants according to two textual metrics:
 - Unique Terms
 - Average Terms per Document


Variant	Documents	Unique Terms	AVG Terms/Doc
1	15,563	4,343	24.25
2	15,475	4,419	24.72
3	14,881	4,313	24.39
4	16,168	4,633	24.71
5	16,730	4,690	24.93





¹ https://github.com/nkraft/teaser


¹ https://github.com/DVSCross/TextualIRFeaturesImpl

Finally, the metrics are calculated by the ArgoUML-SPL Benchmark using a ground truth. They are:

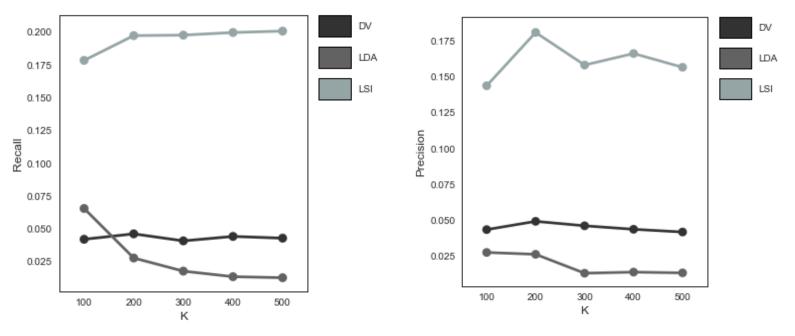
- Precision
- Recall
- F-Measure

Software Engineering Lab (LabSoft) http://labsoft.dcc.ufmg.br/

- □ The metrics used and available at the benchmark:
 - Precision, Recall, and F-Measure
- All the techniques produce a rank as output, containing all the artifacts from source code (classes and methods)

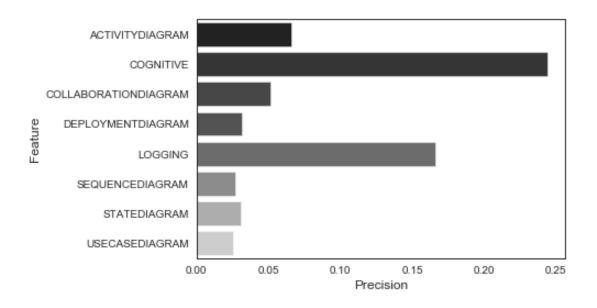
□ So, the difference is about the results order

Relevance filtering on the techniques results
 The main resources that implement the feature must be on the top


- □ Take the first N results
 - N = 10
 - N = 100
 - N = 1000

- As mentioned, each technique model has a hyperparameter K, that assume values as follow:
 - **100, 200, 300, 400, and 500**
- The average for all K and N variations was taken

□ LSI got slightly better results


Technique	Precision	Recall	F-Measure
DV	0.044704	0.042919	0.023914
LDA	0.018685	0.027156	0.012064
LSI	0.160826	0.194393	0.079610

DV and LSI presents better results at K value equals to 200 and LDA decreases the recall as K is increased

Software Engineering Lab (LabSoft) http://labsoft.dcc.ufmg.br/

- □ Some features have better metric results
 - More distinct terms
 - Better code styling

Threats to Validity

Software Engineering Lab (LabSoft) http://labsoft.dcc.ufmg.br/

Threats to Validity

- Possible bugs in the implementation
 - To avoid them the implementations were done using a widely used library (Gensim¹)
 - The code is available on open source format²
- Possible bugs in the benchmark, e.g., on the ground-truth
 - This is the first published work using it

¹ https://radimrehurek.com/gensim/
² https://github.com/DVSCross/TextualIRFeaturesImpl

Conclusion and Future Work

Software Engineering Lab (LabSoft) http://labsoft.dcc.ufmg.br/

Conclusion

□ The feature location activity in the context of extractive SPL adoption is still challenging

□ We have presented a literature review that revisits the feature location approaches

We provided a characterization of ArgoUML-SPL Benchmark with regard to important aspects of textual techniques

Conclusion

- We have shown that the use of textual information retrieval techniques, in isolation or combined with other techniques, is sustained along the years
- The result suggests that LSI outperforms slightly, DV and LDA

Future Work

□ Confirm these results with other benchmarks

Propose feature location techniques by extending our current implementations

Evaluate the application of LSI in hybrid approaches

A Literature Review and Comparison of Three Feature Location Techniques using ArgoUML-SPL

Daniel Cruz¹, Eduardo Figueiredo¹, Jabier Martinez² February 08, 2019

> ¹ Universidade Federal de Minas Gerais, Brazil ² Tecnalia, Spain

> > Software Engineering Lab (LabSoft) http://labsoft.dcc.ufmg.br/