

COMPARISON-BASED FEATURE LOCATION IN ARGOUML VARIANTS

Gabriela K. Lukas Michelon

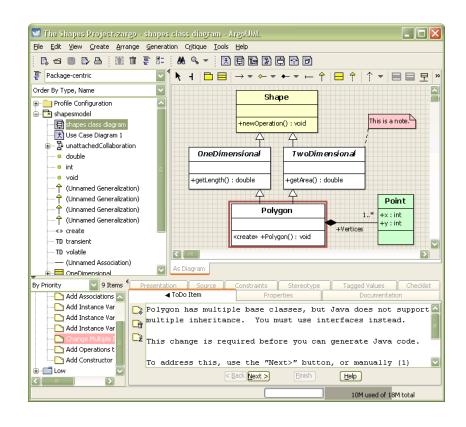
Linsbauer

Wesley K.

Alexander

G. Assunção

Egyed



ARGOUML

- 1999: initial release
- Java-based open source tool
- Supports UML 1.4 diagrams
- Case study to extract SPL
- 2011: ArgoUML SPL
 - ☐ Allows to derive variants from a set of optional features

http://argouml.tigris.org/

FEATURE LOCATION IN ARGOUML SPL

- Feature: software system or systems characteristic, quality or user-visible aspect
- Feature location: mappings/traces between features and their respective implementation
- Challenge³:
 - ☐ Eight features
 - □ 15 predefined scenarios
 - □ Ranging from one to 256 variants
 - ☐ Composed of feature interactions

and feature negations

□ Granularity varies from Java

Classes to statements inside methods

³Jabier Martinez, Nicolas Ordoñez, Xhevahire Tërnava, Tewfik Ziadi, Jairo Aponte, Eduardo Figueiredo, and Marco Tulio Valente. Feature Location Benchmark with ArgoUML SPL. SPLC 2018.

Class

Sequence

Logging

Deployment

ArgoUML-SPL

Cognitive

Suport

Collaboration

Use Case

Diagrams

Activity

ARGOUML SPL DATA SET

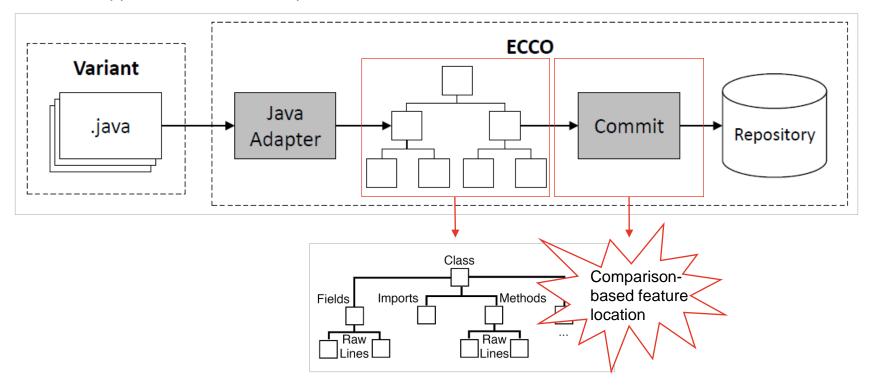
Scenarios

- ☐ 15 scenarios.
- Optional features: State Diagram, Activity Diagram, Use Case Diagram, Collaboration Diagram, Deployment Diagram, Sequence Diagram, Cognitive Support, and Logging.

Scenario	Size	Description
Original	1	Original ArgoUML variant containing all features.
Traditional	10	Variants with no, all, and combinations of 7 features.
PairWise	9	Set of variants that covers all pairwise feature combinations.
2-10 Random	2-10	Randomly selected subsets of variants.
50 Random	50	Randomly selected subset of variants.
100 Random	100	Randomly selected subset of variants.
All	256	All possible variants with 8 optional features.

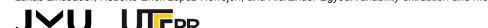
ARGOUML SPL DATA SET

- Ground Truth
 - ☐ 24 traces
 - One trace for each of the eight individual features
 - Two traces with a single negative feature
 - 13 traces with a conjunction of two features
 - One trace with a conjunction of three features

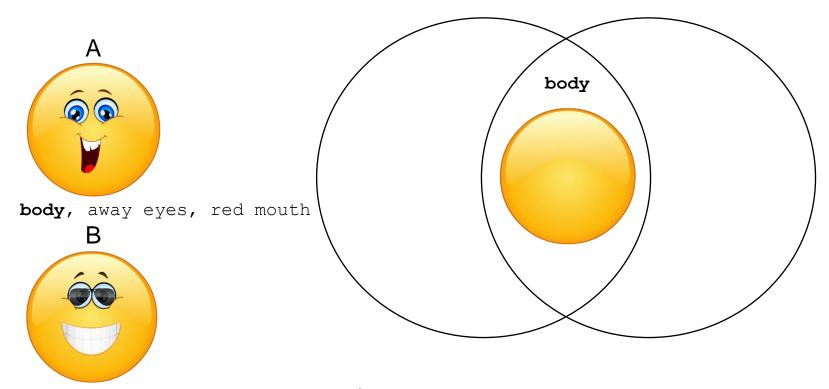

A trace **T** is a pair (**F,A**) that maps a propositional logic formula **F** whose literals are features to a set of implementation artifacts **A**

FEATURE LOCATION TECHNIQUE

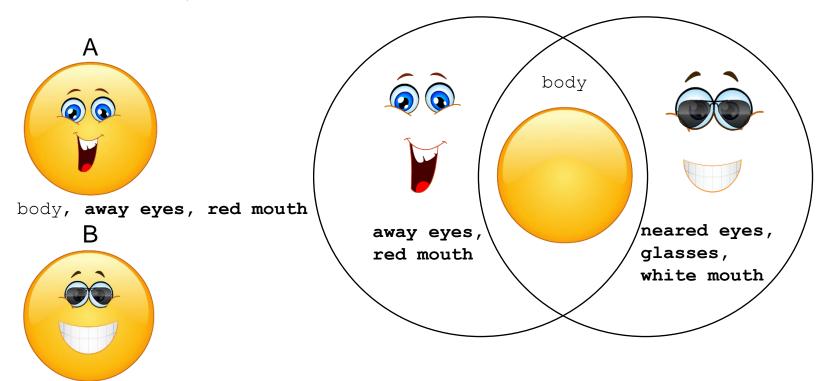
- ECCO tool^{1,2}
 - Applied a new Java Adapter


¹Stefan Fischer, Lukas Linsbauer, Roberto E. Lopez-Herrejon, and Alexander Egyed. The ECCO Tool: Extraction and Composition for Clone-and-Own. ICSE.2015.
²Stefan Fischer Lukas Linsbauer, Roberto E. Lopez-Herrejon, and Alexander Egyed. Enhancing Clone-and-Own with Systematic Reuse for Developing Software Variants. ICSME 2014.

COMPARISON-BASED FEATURE LOCATION

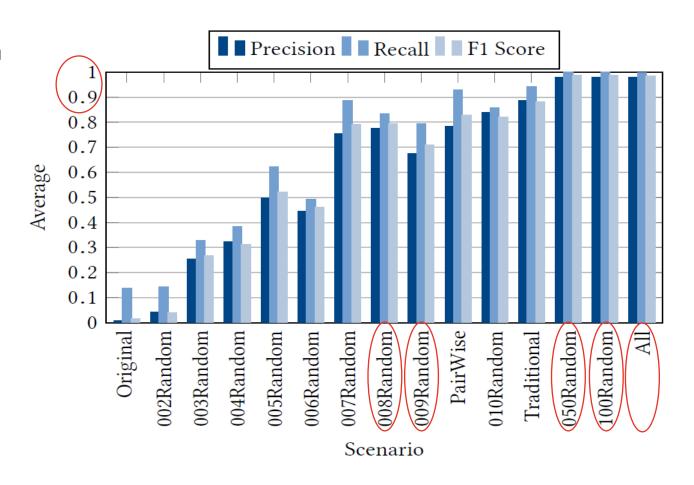

- Commit operation is based on comparison of features and implementation of variants using five rules⁴
- Assume two variants A and B:
 - 1) Common artifacts (in A and B) likely trace to common features (in A and B)
 - Artifacts in A and not B likely trace to features in A and not B, and vice versa
 - Artifacts in A and not B do not trace to features in B and not A, and vice versa
 - 4) Artifacts in A and not B at most trace to features in A, and vice versa
 - 5) Artifacts in A and B at most trace to features in A or B

■ Rule 1: Common artifacts *likely* trace to common features


body, neared eyes, glasses, white mouth

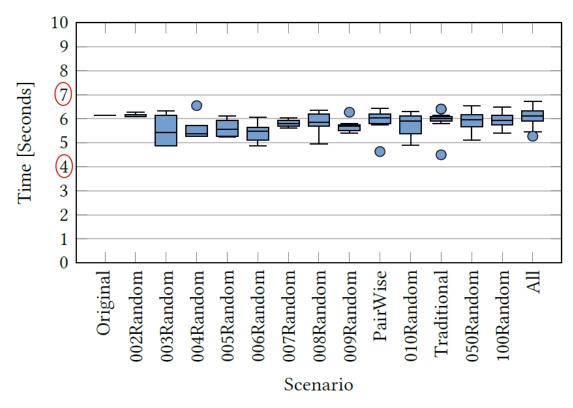
COMMIT OPERATION

■ Rule 2: Artifacts in A and not B *likely* trace to features that are in A and not B, and vice versa


body, neared eyes, glasses, white mouth

RESULTS

- Precision
- Recall
- F1 Score



RESULTS

■ Time Performance

Measured on a laptop model HP ZBook 14, with Intel(R) Core(TM) i7-4600U processor (2.10GHz, 2 cores), 16GB of RAM and SSD storage.

FINAL REMARKS

We presented a solution to the ArgoUML SPL feature location challenge
 Automatic feature location technique
 Based on the comparison of features and implementation of a set of variants
 Scenarios with more variants available had better results in the comparison based feature location
 Runtime increases linearly with the number of variants

DATA AVAILABLE

Artifacts for the paper: https://github.com/jku-isse/SPLC2019-Challenge-ArgoUML-FeatureLocation ECCO tool repository: https://github.com/jku-isse/ecco/tree/develop ArgoUML challenge repository: https://github.com/but4reuse/argouml-spl-benchmark ■ Data Input: ☐ ArgoUML SPL Benchmark scenarios code (set of Java files) Configurations of Variants with its respective features ■ Data Output: Set of computed traces in plain text Computed metrics in % (Precision, Recall and F1 Score) Recorded runtimes per commit operation in milliseconds

COMPARISON-BASED FEATURE LOCATION IN ARGOUML VARIANTS

THANK YOU!

Gabriela Karoline Michelon gabriela.michelon@jku.at

Lukas Linsbauer lukas.linsbauer@jku.at

Wesley K. G. Assunção wesleyk@utfpr.edu.br

Alexander Egyed alexander.egyed@jku.at

